【题目】如图,
垂直于
所在的平面
,
为
的直径,
是弧
上的一个动点(不与端点
重合),
为
上一点,且
是线段
上的一个动点(不与端点
重合).
![]()
(1)求证:
平面
;
(2)若
是弧
的中点,
是锐角,且三棱锥
的体积为
,求
的值.
【答案】(1)见证明;(2)![]()
【解析】
(1)由
为
的直径,得到
,又由
平面
,证得
,利用线面垂直的判定定理得到
平面
,再利用线面垂直的判定定理,即可证得
平面
.
(2)当点
位于线段
上时,如图所示:作
,垂足为点
,根据线面垂直的判定定,证得
平面
,得到
是三棱锥
的底面
上的高,再来体积公式,列出方程,即可求解.
(1)证明:因为
为
的直径,
所以根据直径所对的圆周角是直角,可知
,
因为
平面
,
平面
,所以
,
又因为
平面
平面
,所以
平面
,
又
平面
,所以
,
又因为
平面
,
平面
,
所以
平面
.
(2)当点
位于线段
上时,如图所示:作
,垂足为点
,
因为
平面
,
平面
,所以
,
又因为
,所以
,
又因为
平面
,所以
平面
,
所以
是三棱锥
的底面
上的高,
因为
是弧
的中点,且
,
所以
,且
,
若三棱锥
的体积为
,
则
,解得
,
所以
,所以
,
所以
,
综上所述,当三棱锥
的体积为
时,
.
![]()
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),圆
的方程为
.以原点
为极点,
轴正半轴为极轴建立极坐标系.
(Ⅰ)求直线
及圆
的极坐标方程;
(Ⅱ)若直线
与圆
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”他们的调查结果如下:
![]()
(1)完成如下
列联表,并判断是否有99%的把握认为,了解阿基米德与选择文理科有关?
![]()
(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(ⅰ)求抽取的文科生和理科生的人数;
(ⅱ)从10人的样本中随机抽取3人,用
表示这3人中文科生的人数,求
的分布列和数学期望.参考数据:
![]()
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位从一所学校招收某类特殊人才,对
位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
![]()
例如,表中运动协调能力良好且逻辑思维能力一般的学生有
人.由于部分数据丢失,只知道从这
位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为
.
(Ⅰ)求
的值;
(Ⅱ)从参加测试的
位学生中任意抽取
位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率;
(III)从参加测试的
位学生中任意抽取
位,设运动协调能力或逻辑思维能力优秀的学生人数为
,求随机变量
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
也为抛物线
的焦点,点
为
在第一象限的交点,且
.
(I)求椭圆
的方程;
(II)延长
,交椭圆
于点
,交抛物线
于点
,求三角形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
![]()
图1 图2
(1)记“在
年成交的二手车中随机选取一辆,该车的使用年限在
”为事件
,试估计
的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中
(单位:年)表示二手车的使用时间,
(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用
作为二手车平均交易价格
关于其使用年限
的回归方程,相关数据如下表(表中
,
):
|
|
|
|
|
|
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立
关于
的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格
的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格
的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
;
②参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
![]()
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P( | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为( )
![]()
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记
为数列
的前
项和.“任意正整数
,均有
”是“
为递增数列”的
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com