精英家教网 > 高中数学 > 题目详情
精英家教网已知一个四棱锥的三视图如图所示,则该四棱锥的四个侧面中,直角三角形的个数是(  )
分析:画出满足条件的四棱锥的直观图,可令棱锥PA⊥矩形ABCD,进而可得可得△PAB 和△PAD都是直角三角形,再由由线面垂直的判定定理可得CB⊥平面PAB,CD⊥平面PAD,又得到了两个直角三角形△PCB 和△PCD,由此可得直角三角形的个数.
解答:解:满足条件的四棱锥的底面为矩形,且一条侧棱与底面垂直,
画出满足条件的直观图如图精英家教网四棱锥P-ABCD所示,
不妨令PA⊥矩形ABCD,
∴PA⊥AB,PA⊥AD,PA⊥CB,PA⊥CD,
故△PAB 和△PAD都是直角三角形.
又矩形中 CB⊥AB,CD⊥AD.
这样CB垂直于平面PAB内的两条相交直线PA、AB,
CD垂直于平面PAD内的两条相交直线 PA、AD,
由线面垂直的判定定理可得CB⊥平面PAB,CD⊥平面PAD,
∴CB⊥PB,CD⊥PD,故△PCB 和△PCD都是直角三角形.
故直角三角形有△PAB、△PAD、△PBC、△PCD共4个.
故选A.
点评:本题主要考查证明线线垂直、线面垂直的方法,以及棱锥的结构特征,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东城区一模)已知一个四棱锥的三视图如图所示,则该四棱锥的体积是
4
3
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个四棱锥的三视图如图所示,其中Rt△PDA≌Rt△PBA,且PD=AD=2,E,F,G分别为PA、PD、CD的中点
(1)求证:PB∥平面EFG;
(2)求直线PA与平面EFG所成角的大小;
(3)在直线CD上是否存在一点Q,使二面角Q-EF-D的大小为60°?若存在,求出CQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(一)理数学卷(解析版) 题型:解答题

(本小题满分12分) 已知一个四棱锥的三视图如图所示,其中,且,分别为的中点

(1)求证:PB//平面EFG

(2)求直线PA与平面EFG所成角的大小

(3)在直线CD上是否存在一点Q,使二面角的大小为?若存在,求出CQ的长;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三第二次仿真测试文科数学试卷(解析版) 题型:填空题

已知一个四棱锥的三视图如图所示,则该四棱锥的体积是 ______  .

 

查看答案和解析>>

同步练习册答案