精英家教网 > 高中数学 > 题目详情
(本题满分13分)如图,分别过椭圆左右焦点的动直线相交于点,与椭圆分别交于不同四点,直线的斜率满足.已知当轴重合时,
(1)求椭圆的方程;
(2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.
(1)  (2)M、N坐标分别为为定值

试题分析:(1)由已知条件推导出|AB|=2a=2,|CD|=,由此能求出椭圆E的方程.
(2)焦点F1、F2坐标分别为(-1,0),(1,0),当直线l1或l2斜率不存在时,P点坐标为(-1,0)或(1,0),当直线l1,l2斜率存在时,设斜率分别为m1,m2,设A(x1,y1),B(x2,y2),由,得(2+3m12)x2+6m12x+3m12?6=0,由此利用韦达定理结合题设条件能推导出存在点M,N其坐标分别为(0,-1)、(0,1),使得|PM|+|PN|为定值2
(1)当l1与x轴重合时,,即,         2分
∴l2垂直于x轴,得,(4分)
,  ∴椭圆E的方程为.   5分
(2)焦点坐标分别为(—1,0)、(1,0).
当直线l1或l2斜率不存在时,P点坐标为(—1,0)或(1,0).   6分
当直线l1、l2斜率存在时,设斜率分别为,设
得:
.(7分)


同理.   9分
,∴,即
由题意知, ∴
,则,即,   11分
由当直线l1或l2斜率不存在时,P点坐标为(—1,0)或(1,0)也满足此方程,
点椭圆上,   12分
∴存在点M、N其坐标分别为,使得为定值.  13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦.
(1)求抛物线的准线方程和焦点坐标;
(2)若,求证:直线恒过定点;
(3)当时,设圆,若存在且仅存在两条动弦,满足直线与圆相切,求半径的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点在双曲线上,且双曲线的一条渐近线的方程是
(1)求双曲线的方程;
(2)若过点且斜率为的直线与双曲线有两个不同交点,求实数的取值范围;
(3)设(2)中直线与双曲线交于两个不同点,若以线段为直径的圆经过坐标原点,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,一隧道内设双行线公路,其截面由一个长方形和抛物线构成,为保安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m.若行驶车道总宽度AB为6m,计算车辆通过隧道的限制高度是多少米?(精确到0.1m)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为和椭圆上的点,则两点间的最大距离是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线+=1的离心率,则的值为      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,为椭圆上一点,且,若的面积为9,则的值为( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2011•山东)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )
A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案