精英家教网 > 高中数学 > 题目详情
分别为和椭圆上的点,则两点间的最大距离是(   )
A.B.C.D.
D

试题分析:依题意两点间的最大距离可以转化为圆心到椭圆上的点的最大距离再加上;圆的半径.设.圆心到椭圆的最大距离.所以两点间的最大距离是.故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知等边三角形的一个顶点在坐标原点,另外两个顶点在抛物线y2=2x上,则该三角形的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=x上两点A(x1,y1)、B(x2,y2)关于直线y=x+b对称,且y1y2=-1,则实数b的值为(  )
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线)的焦距为,右顶点为,抛物线的焦点为,若双曲线截抛物线的准线所得线段长为,且,则双曲线的渐近线方程为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是关于的方程的两个不等实根,则过两点的直线与双曲线的公共点的个数为(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P是圆上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.
(1)求出轨迹C的方程,并讨论曲线C的形状;
(2)当时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)如图,分别过椭圆左右焦点的动直线相交于点,与椭圆分别交于不同四点,直线的斜率满足.已知当轴重合时,
(1)求椭圆的方程;
(2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线C:=1,若存在过右焦点F的直线与双曲线C相交于A,B 两点且=3,则双曲线离心率的最小值为(  )
A.B.C.2D.2

查看答案和解析>>

同步练习册答案