精英家教网 > 高中数学 > 题目详情
(2011•山东)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )
A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)
C
由条件|FM|>4,由抛物线的定义|FM|=y0+2>4,所以y0>2
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=x上两点A(x1,y1)、B(x2,y2)关于直线y=x+b对称,且y1y2=-1,则实数b的值为(  )
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P是圆上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.
(1)求出轨迹C的方程,并讨论曲线C的形状;
(2)当时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)如图,分别过椭圆左右焦点的动直线相交于点,与椭圆分别交于不同四点,直线的斜率满足.已知当轴重合时,
(1)求椭圆的方程;
(2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是双曲线的右支上一点,分别是圆上的点,则的最大值等于           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线-=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若(λ,μ∈R),λμ=,则该双曲线的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线C:=1,若存在过右焦点F的直线与双曲线C相交于A,B 两点且=3,则双曲线离心率的最小值为(  )
A.B.C.2D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定点,且均不在平面上,动点在平面上,且,则点的轨迹为(  )
A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能

查看答案和解析>>

同步练习册答案