【题目】已知椭圆
:
的右焦点为
,离心率为
,
是椭圆
上位于第一象限内的任意一点,
为坐标原点,
关于
的对称点为
,
,圆
:
.
![]()
(1)求椭圆
和圆
的标准方程;
(2)过点
作
与圆
相切于点
,使得点
,点
在
的两侧.求四边形
面积的最大值.
科目:高中数学 来源: 题型:
【题目】某校为了诊断高三学生在市“一模”考试中文科数学备考的状况,随机抽取了50名学生的市“一模”数学成绩进行分析,将这些成绩分为九组,第一组[60,70),第二组[70,80),……,第九组[140,150],并绘制了如图所示的频率分布直方图.
![]()
(1)试求出
的值并估计该校文科数学成绩的众数和中位数;
(2)现从成绩在[120,150]的同学中随机抽取2人进行谈话,那么抽取的2人中恰好有一人的成绩在[130,140)中的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:
232 321 230 023 123 021 132 220 001
231 130 133 231 013 320 122 103 233
由此可以估计,恰好第三次就停止的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过M(
,1),N(
,1)两点,且圆心C在直线x+y﹣3=0上,过点A(﹣1,0)的动直线l与圆C相交于P、Q两点.
(Ⅰ)求圆C的方程;
(Ⅱ)当|PQ|=4
时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有
名学生排成一排,求分别满足下列条件的排法种数,要求列式并给出计算结果.
(1)甲不在两端;
(2)甲、乙相邻;
(3)甲、乙、丙三人两两不得相邻;
(4)甲不在排头,乙不在排尾。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
、
是椭圆
:
的左右焦点,焦距为6,椭圆
上存在点
使得
,且
的面积为9.
![]()
(Ⅰ)求
的方程;
(Ⅱ)过
的直线
与椭圆
相交于
,
两点,直线
与
轴不重合,
是
轴上一点,且
,求点
纵坐标的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某种细菌的适宜生长温度为
,为了研究该种细菌的繁殖数量
(单位:个)随温度
(单位:
)变化的规律,收集数据如下:
温度 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
繁殖数量 | 20 | 25 | 33 | 27 | 51 | 112 | 194 |
对数据进行初步处理后,得到了一些统计量的值,如下表所示:
|
|
|
|
|
|
|
18 | 66 | 3.8 | 112 | 4.3 | 1428 | 20.5 |
其中
,
.
![]()
(1)请绘出
关于
的散点图,并根据散点图判断
与
哪一个更适合作为该种细菌的繁殖数量
关于
的回归方程类型(结果精确到0.1);
(2)当温度为
时,该种细菌的繁殖数量的预报值为多少?
参考公式:对于一组数据
,其回归线
的斜率和截距的最小二乘估计分别为:
,
.参考数据:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com