精英家教网 > 高中数学 > 题目详情
7.设U=R,A={x|x<1} 则∁UA={x|x≥1}?.

分析 根据全集U及A,求出A的补集即可.

解答 解:∵U=R,A={x|x<1},
∴∁UA={x|x≥1},
故答案为:{x|x≥1}

点评 此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=$\left\{\begin{array}{l}{2^x},0<x≤1\\ \frac{1}{2}f({x-1}),x>1\end{array}$,则方程f(x)=$\frac{1}{x}$在[-3,5]上的所有实根之和为(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对a,b∈R,记max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,则函数f(x)=max{|x+1|,x2}(x∈R)的最小值是(  )
A.$\frac{3-\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{2}$C.$\frac{1+\sqrt{5}}{2}$D.$\frac{1-\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在极坐标系中,以(1,0)为圆心,且过极点的圆的极坐标方程为(  )
A.ρ=1B.ρ=cosθC.ρ=2sinθD.ρ=2cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2lnx-x2+ax(a∈R).
(1)当a=1时,求函数f(x)的图象在x=1处的切线方程;
(2)求函数f(x)的单调区间;
(3)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0).且x1<x2,求证:${f^/}(\frac{{{x_1}+{x_2}}}{2})<0$(其中f′(x)是f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列{an}中,已知a5=1,则a4+a5+a6=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)在区间[n,m]上恒有f(x)∈[$\frac{n}{k}$,km]成立,则称区间[n,m]为函数f(x)的“k度约束区间”,若区间[$\frac{1}{t}$,t](t>0)为函数f(x)=x2-tx+t2的“2度约束区间”,则实数t的取值范围是(  )
A.(1,2]B.$(1,\root{3}{{\frac{3}{2}}}]$C.$({1,\sqrt{2}}]$D.$(\sqrt{2},2]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图是判断输入的整数x奇偶性的程序框图:其中判断框内可以填入的条件是(  )
A.m=0B.x=0C.x=1D.m=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC,内角A、B、C所对的边长分别为a、b、c,且acosA=bcosB
(1)若a=3,b=4,求$|{\overrightarrow{CA}+\overrightarrow{CB}}|$的值,
(2)若 C=60°,△ABC的面积为$\sqrt{3}$,求$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$的值.

查看答案和解析>>

同步练习册答案