分析 (1)求出函数的导数,计算f′(1),f(1),代入切线方程即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(3)由于f(x)的图象与x轴交于两个不同的点A(x1,0),B(x2,0),可得方程2lnx-x2+ax=0的两个根为x1,x2,得到a=(x1+x2)-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$,可得f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=$\frac{4}{{{x}_{1}+x}_{2}}$-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$,经过变形只要证明 $\frac{2{(x}_{2}{-x}_{1})}{{{x}_{1}+x}_{2}}$+ln$\frac{{x}_{1}}{{x}_{2}}$<0,通过换元再利用导数研究其单调性即可得.
解答 解:(1)a=1时,f(x)=2lnx-x2+x,
f′(x)=$\frac{2}{x}$-2x+1,f′(1)=1,f(1)=0,
故切线方程是:y=x-1;
(2)f′(x)=$\frac{-{2x}^{2}+x+2}{x}$,(x>0),
令g(x)=-2x2+x+2.则△=a2+16>0,
令f′(x)>0,解得:x<$\frac{-a-\sqrt{{a}^{2}+16}}{4}$<0(舍),或x>$\frac{-a+\sqrt{{a}^{2}+16}}{4}$,
令f′(x)<0,解得:0<x<$\frac{-a+\sqrt{{a}^{2}+16}}{4}$,
∴f(x)在$(0,\frac{{a+\sqrt{{a^2}+16}}}{4})$递减,在$(\frac{{a+\sqrt{{a^2}+16}}}{4},+∞)$递增;
(3)∵f(x)的图象与x轴交于两个不同的点A(x1,0),B(x2,0),
∴方程2lnx-x2+ax=0的两个根为x1,x2,则 $\left\{\begin{array}{l}{2l{nx}_{1}{{-x}_{1}}^{2}+{ax}_{1}=0}\\{2l{nx}_{2}{{-x}_{2}}^{2}+{ax}_{2}=0}\end{array}\right.$,
两式相减得a=(x1+x2)-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$,
又f(x)=2lnx-x2+ax,f′(x)=$\frac{2}{x}$-2x+a,
则f′($\frac{{{x}_{1}+x}_{2}}{2}$)=$\frac{4}{{{x}_{1}+x}_{2}}$-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$,
下证 $\frac{4}{{{x}_{1}+x}_{2}}$-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$<0(*),
即证明 $\frac{2{(x}_{2}{-x}_{1})}{{{x}_{1}+x}_{2}}$+ln$\frac{{x}_{1}}{{x}_{2}}$<0,
令t=$\frac{{x}_{1}}{{x}_{2}}$,∵0<x1<x2,∴0<t<1,
即证明u(t)=$\frac{2(1-t)}{t+1}$+lnt<0在0<t<1上恒成立.
∵u′(t)=$\frac{-2(t+1)-2(1-t)}{{(t+1)}^{2}}$+$\frac{1}{t}$=$\frac{1}{t}$-$\frac{4}{{(t+1)}^{2}}$=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$,
又0<t<1,
∴u′(t)>0,
∴u(t)在(0,1)上是增函数,则u(t)<u(1)=0,
从而知$\frac{2{(x}_{2}{-x}_{1})}{{{x}_{1}+x}_{2}}$+ln$\frac{{x}_{1}}{{x}_{2}}$<0,
故(*)式<0,即f′($\frac{{{x}_{1}+x}_{2}}{2}$)<0成立.
点评 本题考查了利用导数研究函数的单调性、最值问题,考查导数的几何意义、切线的方程、方程实数根的个数转化为图象的交点,考查了推理能力和计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com