精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=$\frac{1}{3}$x3-2ax2+bx在(2,f(2))的切线方程是直线3x+3y-8=0.
(1)求a、b的值;
(2)讨论函数f(x)的单调性.

分析 (1)求出f(x)的导数,得到关于a,b的方程组,求出a,b的值即可;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.

解答 解:(1)∵(2,f(2))即在3x+3y-8=0上,
∴x=2时,$y=f(2)=\frac{2}{3}$,f'(x)=x2-4ax+b,
即$\left\{{\begin{array}{l}{f(2)=\frac{8}{3}-8a+2b=\frac{2}{3}}\\{k=f'(2)=4-8a+b=-1}\end{array}}\right.⇒\left\{{\begin{array}{l}{a=1}\\{b=3}\end{array}}\right.$;
(2)由(1)知:$f(x)=\frac{1}{3}{x^3}-2{x^2}+3$,
则有f'(x)=x2-4x+3,
$\begin{array}{l}f'(x)>0⇒x<1或x>3\\ f'(x)<0⇒1<x<3\end{array}$,
即f(x)的增区间:(-∞,1)和[3,+∞),减区间:[1,3).

点评 本题考查了切线方程问题,考查函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若p:a∈R且-1<a<1,q:关于x的一元二次方程:x2+(a+1)x+a-2=0的一个根大于零,另一个根小于零,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,∠A,∠B,∠C所对应的边分别为a,b,c.若∠C=30°,a=$\sqrt{2}$c,则∠B等于(  )
A.45°B.105°C.15°或105°D.45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A={x|2x>1},B={x|y=log2(x+1)},则A∪B=(  )
A.{x|-1<x<0}B.{x|x≥1}C.{x|x>0}D.{x|x>-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知lgx+lgy=lg(x+y+3).
(1)求xy的最小值;
(2)求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2lnx-x2+ax(a∈R).
(1)当a=1时,求函数f(x)的图象在x=1处的切线方程;
(2)求函数f(x)的单调区间;
(3)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0).且x1<x2,求证:${f^/}(\frac{{{x_1}+{x_2}}}{2})<0$(其中f′(x)是f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆C过点A(2,0),B(4,0),直线l过原点O,与圆C交于P,Q两点,则$\overrightarrow{OP}$•$\overrightarrow{OQ}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cos(α-$\frac{π}{3}$)=$\frac{1}{3}$,则sin(2α-$\frac{π}{6}$)=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列结论中,正确的是(  )
①命题“若p2+q2=2,则p+q≤2”的逆否命题是“若p+q>2,则p2+q2≠2”;
②已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$为非零的平面向量,甲:$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,乙:$\overrightarrow b=\overrightarrow c$,则甲是乙的必要条件,但不是充分条件;
③命题p:y=ax(a>0且a≠1)是周期函数,q:y=sinx是周期函数,则p∧q是真命题;
④命题$p:?{x_0}∈R,{x_0}^2-3{x_0}+1≥0$的否定是?p:?x∈R,x2-3x+1<0.
A.①②B.①④C.①②④D.①③④

查看答案和解析>>

同步练习册答案