精英家教网 > 高中数学 > 题目详情
3.已知lgx+lgy=lg(x+y+3).
(1)求xy的最小值;
(2)求x+y的最小值.

分析 (1)利用对数函数的定义域,基本不等式,求得xy的最小值.
(2)根据x+y+3=xy,利用基本不等式求得x+y的最小值.

解答 解:(1)由lgx+lg y=lg(x+y+3),得 $\left\{\begin{array}{l}{x>0}\\{y>0}\\{xy=x+y+3}\end{array}\right.$,
∵x>0,y>0,∴xy=x+y+3≥2$\sqrt{xy}$+3.∴xy-2$\sqrt{xy}$-3≥0.即($\sqrt{xy}$)2-2$\sqrt{xy}$-3≥0.
∴($\sqrt{xy}$+1)($\sqrt{xy}$-3)≥0.∴$\sqrt{xy}$≥3,∴xy≥9,
当且仅当x=y=1时,等号成立.∴xy的最小值为9.
(2)∵x>0,y>0,∴x+y+3=xy≤($\frac{x+y}{2}$)2
∴(x+y)2-4(x+y)-12≥0,∴[(x+y)+2][(x+y)-6]≥0,∴x+y≥6.
当且仅当x=y=1时取等号,∴x+y的最小值为6.

点评 本题主要考查对数函数的定义域,基本不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知a为实数,若复数z=(a2-9)+(a+3)i为纯虚数,则$\frac{{a+{i^{19}}}}{1+i}$的值为(  )
A.-1-2iB.-1+2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面内,定点A,B,C,D满足|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|,$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,动点P,M满足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则|$\overrightarrow{BM}$|2的最大值是$\frac{49}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sin(45°+α)=$\frac{5}{13}$,则sin(225°+α)=-$\frac{5}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=|ex-3|,若函数y=f(x)-k恰有4 个零点,则实数k的取值范围是(  )
A.(0,ln3)B.(0,2)C.(0,e)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\frac{1}{3}$x3-2ax2+bx在(2,f(2))的切线方程是直线3x+3y-8=0.
(1)求a、b的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.近两年来,各大电视台都推出了由明星参与的游戏竞技类节目.高一某研究性学习小组在长沙某社区对50人进行第一时间收看该类节目与性别是否有关的收视调查,其中20名女性中有15名第一时间收看该类节目,30名男性中10名第一时间收看该类节目.
(1)根据以上数据建立一个2×2列联表,并判断第一时间收看该类节目是否与性别有关?
(2)该研究性学习小组共有A、B、C、D和E五名同学,五人分成两组模拟“撕名牌”的游戏,其中一组三人,一组两人,求A、B两同学分在同一组的概率.
参考数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值表:
P(Χ2≥k)0.1000.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知△ABC中,D为BC的中点,若∠B=75°,$∠ADC={150°},BD=\sqrt{6}+\sqrt{2}$,则△ABC的周长为6+2($\sqrt{6}+\sqrt{2}+\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过抛物线y2=4x的焦点F,且倾斜角为30°的直线与抛物线交于A,B两点,则以AB为直径的圆的标准方程是(x-7)2+(y-2$\sqrt{3}$)2=64.

查看答案和解析>>

同步练习册答案