精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinx,cosx),
b
=(6sinx+cosx,7sinx-2cosx),设函数f(x)=
a
b
-2.
(1)求函数f(x)的最大值,并求取得最大值时x的值;
(2)在A为锐角的△ABC中,A、B、C的对边分别为a、b、c,若f(A)=4且△ABC的面积为3,b+c=2+3
2
,求a的值.
(1)∵向量
a
=(sinx,cosx),
b
=(6sinx+cosx,7sinx-2cosx),
∴f(x)=
a
b
-2=sinx(6sinx+cosx)+cosx(7sinx-2cosx)-2
=6sin2x+sinxcosx+7sinxcosx-2cos2x-2
=6sin2x-2cos2x-2(sin2x+cos2x)+8sinxcosx
=4(sin2x-cos2x)+4sin2x
=4sin2x-4cos2x
=4
2
sin(2x-
π
4
),
∵sin(2x-
π
4
)∈[-1,1],
∴当2x-
π
4
=2kπ+
π
2
,即x=kπ+
8
时,正弦函数sin(2x-
π
4
)取得最大值,且最大值为1,
则f(x)的最大值为4
2
,此时x=kπ+
8

(2)由f(A)=4,得到4
2
sin(2A-
π
4
)=4,即sin(2A-
π
4
)=
2
2

又A为三角形的内角,∴2A-
π
4
=
π
4
或2A-
π
4
=
4

解得:A=
π
4
或A=
π
2
(由A为锐角,故舍去),
∴A=
π
4

又三角形的面积为3,
∴S=
1
2
bcsinA=3,即bc=6
2
,又b+c=2+3
2

由余弦定理得:a2=b2+c2-2bccosA=b2+c2-
2
bc=(b+c)2-2bc-
2
bc
=(2+3
2
2-12
2
-12=10,
则a=
10
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)当θ∈[-
π
12
π
3
]时,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1),满足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ)与
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大小.

查看答案和解析>>

同步练习册答案