精英家教网 > 高中数学 > 题目详情

已知的图象过原点,且在点处的切线与轴平行.对任意,都有.
(1)求函数在点处切线的斜率;
(2)求的解析式;
(3)设,对任意,都有.求实数的取值范围

(1); (2) ; (3)

解析试题分析:(1)   ∵  ∴
(2) ∵  ∴

∵对恒成立. 即:恒成立

     ∴    
(3) ∴


∴对 恒成立
即:
, 则

    ∴
考点:本题主要考查应用导数研究函数的单调性,导数的几何意义,不等式恒成立问题。
点评:中档题,本题属于导数应用中的基本问题,通过求导数,确定得到切线的斜率,通过研究导数的正负,明确函数的单调性。对于恒成立问题,一般地要通过构造函数,转化成研究函数的最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若函数的最小值为,求的最大值;
(3)若函数的最小值为定义域内的任意两个值,试比较  的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最大值;
(2)若函数有相同极值点,
①求实数的值;
②若对于为自然对数的底数),不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像如右所示。
(1)求证:在区间为增函数;
(2)试讨论在区间上的最小值.(要求把结果写成分段函数的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;
(Ⅱ)当时,恒成立,求整数的最大值;
(Ⅲ)试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 当时, 求函数的单调增区间;
(2)当时,求函数在区间上的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象在与轴交点处的切线方程是.
(Ⅰ)求函数的解析式;
(Ⅱ)设函数,若的极值存在,求实数的取值范围以及当取何值时函数分别取得极大和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,满足.    (1) 求函数的单调递增区间;
(2)设三内角所对边分别为,求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为1.
(1)求常数的值;(2)求使成立的x的取值集合.

查看答案和解析>>

同步练习册答案