精英家教网 > 高中数学 > 题目详情

,满足.    (1) 求函数的单调递增区间;
(2)设三内角所对边分别为,求上的值域.

(1)单调增区间为; (2) .

解析试题分析:(1)

的单调增区间为   6分
(2),由余弦定理可变形为,由正弦定理为

       12分
考点:本题主要考查三角函数的图象和性质,三角函数和差倍半公式,正弦定理、余弦定理的应用。
点评:典型题,三角函数的图象和性质、三角函数图象的变换是高考考查的重点,为研究三角函数的性质,往往要利用诱导公式、和差倍半公式进行“化一” 。(II)首先应用正弦定理、余弦定理确定B的范围,进一步研究指定角的范围内三角函数最大值、最小值问题。在确定角的范围时易出错,要特别细心。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知不等式
(1)若对所有的实数不等式恒成立,求的取值范围;
(2)设不等式对于满足的一切的值都成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象过原点,且在点处的切线与轴平行.对任意,都有.
(1)求函数在点处切线的斜率;
(2)求的解析式;
(3)设,对任意,都有.求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的单调区间,如果函数仅有两个零点,求实数的取值范围;
(2)当时,试比较与1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为实数;
(1)当时,试讨论函数的零点的个数;
(2)已知不等式对任意都成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上单调递增,在区间[-2,2]上单调递减.
(1)求的解析式;
(2)设,若对任意的1x­2不等式恒成立,求实数m的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求的值;
(Ⅱ)若对于恒成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数定义在上,对于任意的,有,且当时,.
(1)验证函数是否满足这些条件;
(2)若,且,求的值.
(3)若,试解关于的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)设为奇函数,为常数.
(1)求的值;
(2)判断在区间(1,+∞)内的单调性,并证明你的判断正确;
(3)若对于区间 [3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案