精英家教网 > 高中数学 > 题目详情
某中学号召本校学生在本学期参加市创办卫生城的相关活动,学校团委对该校学生是否关心创卫活动用简单抽样方法调查了位学生(关心与不关心的各一半),
结果用二维等高条形图表示,如图.

(1)完成列联表,并判断能否有℅的把握认为是否关心创卫活动与性别有关?

0.10
0.05
0.01

2.706
3.841
6.635
(参考数据与公式:

 


合计
关心
 
 
500
不关心
 
 
500
合计
 
524
1000
 
(2)已知校团委有青年志愿者100名,他们已参加活动的情况记录如下:
参加活动次数
1
2
3
人数
10
50
40
 
(i)从志愿者中任选两名学生,求他们参加活动次数恰好相等的概率;
(ii)从志愿者中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望
(1)不能有℅的把握认为是否关心创卫活动与性别有关.
(2)(i)他们参加活动次数恰好相等的概率为 
(ii) 分布列为








数学期望:

试题分析:(1)作出列联表:
 


合计
关心
252
248
500
不关心
224
276
500
合计
476
524
1000
由公式得            4分
所以不能有℅的把握认为是否关心创卫活动与性别有关.             5分
(2)(i)他们参加活动次数恰好相等的概率为
                                       7分
(ii) 从志愿者中任选两名学生,记“这两人中一人参加1次活动,另一个参加两次活动”为事件,“这两人中一人参加2次活动,另一个参加3次活动”为事件,“这两人中一人参加1次活动,另一个参加两次活动”, “这两人中一人参加1次活动,另一个参加3次活动”为事件.                                 8分
                  9分
                                  10分
分布列为








数学期望:                     12分
点评:典型题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。本题对计算能力要求较高,难度较大。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男生上网时间与频数分布表
上网时间(分钟)





人数
5
25
30
25
15
表2:女生上网时间与频数分布表
上网时间(分钟)





人数
10
20
40
20
10
(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.
表3 :
 
上网时间少于60分钟
上网时间不少于60分钟
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知之间的几组数据如下表:

1
2
3
4
5
6

0
2
1
3
3
4
假设根据上表数据所得线性回归直线方程为
求得的直线方程为则以下结论正确的是(  )
A.   B.    C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某地区对某路段公路上行驶的汽车速度监控,从中抽取200辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70km/h以上的汽车大约有__________辆. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:已知从全部210人中随机抽取1人为优秀的概率为
 
优秀
非优秀
总计
甲班
20
 
 
乙班
 
60
 
合计
 
 
210
 
(Ⅰ)请完成上面的列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;
(Ⅱ)从全部210人中有放回抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为,若每次抽取的结果是相互独立的,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下联表:
 
优秀
非优秀
合计
甲班
30
 
 
乙班
 
50
 
合计
 
 
200
已知全部200人中随机抽取1人为优秀的概率为
(1)请完成上面联表;
(2)根据列联表的数据,能否有的把握认为“成绩与班级有关系”
(3)从全部200人中有放回抽取3次,每次抽取一人,记被抽取的3人中优秀的人数为,若每次抽取得结果是相互独立的,求的分布列,期望和方差
参考公式与参考数据如下:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在一次对“学生的数学成绩与物理成绩是否有关”的独立性检验的试验中,由列联表算得的观测值,参照附表:

0.050
0.010
0.001

3.841
6.635
10.828
 
判断在此次试验中,下列结论正确的是(   )
A. 有99.9%以上的把握认为“数学成绩与物理成绩有关”
B. “数学成绩与物理成绩有关” 的概率为99%
C. 在犯错误的概率不超过0.01的前提下,认为“数学成绩与物理成绩有关”
D. 在犯错误的概率不超过0.001的前提下,认为“数学成绩与物理成绩有关”

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

回归直线方程为,则时,的估计值为              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为(   )
A.920B.960C.808 D.1200

查看答案和解析>>

同步练习册答案