精英家教网 > 高中数学 > 题目详情
10.如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路(不考虑宽度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.
(I)求道路BE的长度;
(Ⅱ)求道路AB,AE长度之和的最大值.

分析 (I)连接BD,由余弦定理可得BD,由已知可求∠CDB=∠CBD=30°,∠CDE=120°,可得∠BDE=90°,利用勾股定理即可得解BE的值.
(Ⅱ)设∠ABE=α,由正弦定理,可得AB=4sin(120°-α),AE=4sinα,利用三角函数恒等变换的应用化简可得AB+AE=4$\sqrt{3}$sin(α+30°),结合范围30°<α+30°<150°,利用正弦函数的性质可求AB+AE的最大值,从而得解.

解答 (本题满分为13分)
解:(I)如图,连接BD,在△BCD中,由余弦定理可得:BD2=BD2+CD2-2BC•CDcos∠BCD=1+1-2×1×1×(-$\frac{1}{2}$)=3,
∴BD=$\sqrt{3}$,
∵BC=CD,
∴∠CDB=∠CBD=$\frac{180°-120°}{2}$=30°,
又∵∠CDE=120°,
∴∠BDE=90°,
∴在Rt△BDE中,BE=$\sqrt{B{D}^{2}+D{E}^{2}}$=$\sqrt{3+9}$=2$\sqrt{3}$.…5分
(Ⅱ)设∠ABE=α,∵∠BAE=60°,∴∠AEB=120°-α,
在△ABE中,由正弦定理,可得:$\frac{AB}{sin∠AEB}=\frac{AE}{sin∠ABE}=\frac{BE}{sin∠BAE}$,
∵$\frac{BE}{sin∠BAE}=\frac{2\sqrt{3}}{sin60°}$=4,
∴AB=4sin(120°-α),AE=4sinα,
∴AB+AE=4sin(120°-α)+4sinα
=4($\frac{\sqrt{3}}{2}cosα+\frac{1}{2}sinα$)+4sinα
=2$\sqrt{3}$cosα+6sinα
=4$\sqrt{3}$sin(α+30°),
∵0°<α<120°,
∴30°<α+30°<150°,
∴当α+30°=90°,即α=60°时,AB+AE取得最大值4$\sqrt{3}$km,即道路AB,AE长度之和的最大值为4$\sqrt{3}$km.…13分

点评 本题考查余弦定理,考查正弦定理,考查三角函数的化简,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$=(-3,4),$\overrightarrow{b}$=(t,3),向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为-3,则t=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算下列各式的值:
(1)log4$\sqrt{8}$+lg50+lg2+5${\;}^{lo{g}_{5}3}$+(-9.8)0
(2)($\frac{27}{64}$)${\;}^{\frac{2}{3}}$-($\frac{25}{4}$)0.5+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x+$\frac{m}{x}$(x>0,m>0)和函数g(x)=a|x-b|+c(x∈R,a>0,b>0).问:
(1)证明:f(x)在($\sqrt{m}$,+∞)上是增函数;
(2)把函数g1(x)=|x|和g2(x)=|x-1|写成分段函数的形式,并画出它们的图象,总结出g2(x)的图象是如何由g1(x)的图象得到的.请利用上面你的结论说明:g(x)的图象关于x=b对称;
(3)当m=1,b=2,c=0时,若f(x)>g(x)对于任意的x>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若f'(x)是f(x)的导函数,f'(x)>2f(x)(x∈R),f(${\frac{1}{2}}$)=e,则f(lnx)<x2的解集为(0,$\sqrt{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题为真命题的是(  )
A.命题“若x>y,则x>|y|”的逆命题B.命题“若x2≤1,则x≤1”的否命题
C.命题“若x=1,则x2-x=0”的否命题D.命题“若$a>b,则\frac{1}{a}<\frac{1}{b}$”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若x≥0,则y=x+$\frac{4}{x+1}$的取值范围为[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,且满足a1=2,an+1=2Sn+1,则数列{an}的通项公式为${a_n}=\left\{\begin{array}{l}2,n=1\\ 5•{3^{n-2}},n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知矩阵A=$(\begin{array}{l}{1}&{2}&{-1}\\{2}&{2}&{-3}\end{array})$,矩阵B=$(\begin{array}{l}{a}\\{-2a}\\{3a}\end{array})$.若AB=$(\begin{array}{c}12\\ 22\end{array}\right.)$,则a=-2.

查看答案和解析>>

同步练习册答案