精英家教网 > 高中数学 > 题目详情

【题目】给出下列五个命题:

①函数fx=2a2x-1-1的图象过定点(-1);

②已知函数fx)是定义在R上的奇函数,当x≥0时,fx=xx+1),若fa=-2则实数a=-12

③若loga1,则a的取值范围是(1);

④若对于任意xRfx=f4-x)成立,则fx)图象关于直线x=2对称;

⑤对于函数fx=lnx,其定义域内任意x1x2都满足f

其中所有正确命题的序号是______

【答案】③④⑤

【解析】

由指数函数的图象的特点解方程可判断①;由奇函数的定义,解方程可判断②;由对数不等式的解法可判断③;由函数的对称性可判断④;由对数函数的运算性质可判断⑤.

解:①函数,则,故①错误;

②因为当时, ,且,所以由函数fx)是定义在R上的奇函数得,故②错误;

③若,可得,故③正确;

④因为,则fx)图象关于直线x=2对称,故④正确;

⑤对于函数

当且仅当取得等号,其定义域内任意都满足,故⑤正确.

故答案为:③④⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x)x,则下列结论中正确的是(  )
A.若﹣3≤m<n,则f(m)<f(n)
B.若m<n≤0,则f(m)<f(n)
C.若f(m)<f(n),则m2<n2
D.若f(m)<f(n),则m3<n3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】洛萨·科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1,如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,1.对科拉茨猜想,目前谁也不能证明,更不能否定,如果对正整数按照上述规则实施变换(注:1可以多次出现)后的第九项为1,则的所有可能取值的集合为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大家知道,莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如下:

阅读过莫言的
作品数(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10

(Ⅰ)试估计该校学生阅读莫言作品超过50篇的概率;
(Ⅱ)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.根据题意完成下表,并判断能否有75%的把握认为对莫言作品的非常了解与性别有关?

非常了解

一般了解

合计

男生

女生

合计

附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求的值;

(2)证明:是区间上的减函数;

(3)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|,当a<b<c时,f(a)>f(c)>f(b),那么正确的结论是(  )
A.2a>2b
B.2a>2c
C.2﹣a<2c
D.2a+2c<2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,(i)求曲线在点处的切线方程;

(ii)求函数的单调区间;

(Ⅱ)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)六个从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有几种?

(2)把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有几种?

(3)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法有几种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为为其左、右顶点,为椭圆上除外任意一点,若记直线斜率分别为.

(1)求证:为定值;

(2)若椭圆的长轴长为4,过点作两条互相垂直的直线,若恰好为与椭圆相交的弦的中点,求与椭圆相交的弦的中点的横坐标.

查看答案和解析>>

同步练习册答案