精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.
分析:(1)证明EF∥面PAD,可用线面平行的判定定理,由题设及图,可先证明EF∥AP再由线面平行的判定定理证明;
(2)证明面PDC⊥面PAD,由判定定理知要先证明线面垂直,由题设及图知,可先证AP⊥面PCD,再由面面垂直的判定定理证明面面垂直.
解答:解:(1)如图,连接AC,
∵ABCD为矩形且F是BD的中点,
∴AC必经过F.(2分)
又E是PC的中点,
所以,EF∥AP.(4分)
∵EF在面PAD外,PA在面内,
∴EF∥面PAD(6分)
(2)∵面PAD⊥面ABCD,CD⊥AD,面PAD∩面ABCD=AD,
∴CD⊥面PAD,(8分)
又AP?面PAD,
∴AP⊥CD.(9分)
又∵AP⊥PD,PD和CD是相交直线,AP⊥面PCD.(11分)
又AD?面PAD,所以,面PDC⊥面PAD.(12分)
点评:本题考查线面平行与面面垂直,掌握线面平行的判定定理与面面垂直的判定定理是解决本题的关键,立体几何的证明题主要考查定理的使用及空间立体感知能力,观察能力,推理判断能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案