精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin\frac{πx}{4},2≤x≤10}\end{array}\right.$,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则$\frac{({x}_{3}-2)({x}_{4}-2)}{{x}_{1}{x}_{2}}$的取值范围是(0,12).

分析 做出f(x)的函数图象,求出x1,x2,x3,x4的范围,根据对数函数的性质得出x1x2=1,利用三角函数的对称性得出x3+x4=12,代入式子化简得出关于x3的二次函数,根据x3的范围和二次函数的性质求出值域即可.

解答 解:作出函数f(x)的图象如图所示:

因为存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),
∴$\frac{1}{2}$<x1<1,1<x2<2,2<x3<4,8<x4<10,
∵-log2x1=log2x2,∴log2$\frac{1}{{x}_{1}}$=log2x2,∴x1x2=1,
∵y=sin$\frac{πx}{4}$关于直线x=6对称,∴x3+x4=12,
∴$\frac{({x}_{3}-2)({x}_{4}-2)}{{x}_{1}{x}_{2}}$=(x3-2)(x4-2)=(x3-2)(12-x3-2)=-x32+12x3-20=-(x3-6)2+16,
令g(x3)=-(x3-6)2+16,则g(x3)在(2,4)上是增函数,
∵g(2)=0,g(4)=12,
∴0<g(x3)<12.
故答案为(0,12).

点评 本题考查了分段函数图象的图象,对数函数,三角函数,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数f(x)=|x-2|-|lnx|在定义域内零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=loga(2-ax),(a>0,a≠1)在[0,1]上是减函数,则实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(2x-1)=4x2-4x+5,则函数f(x)的解析式为(  )
A.f(x)=x2-2B.f(x)=x2+4C.f(x)=2x2+2x-5D.f(x)=x2-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2ex,g(x)=ax+2.记F(x)=f(x)-g(x).
(Ⅰ)讨论函数F(x)的单调性;
(Ⅱ)若F(x)≥0恒成立,求证:x1<x2时,$\frac{F({x}_{2})-F({x}_{1})}{{x}_{2}-{x}_{1}}$>2(e${\;}^{{x}_{1}}$-1)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算:sin$\frac{13π}{2}$=1,cos$\frac{19π}{3}$=$\frac{1}{2}$,tan405°=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知圆C1:x2+y2-2x=0,圆C2:x2+y2-4y-1=0,两圆的相交弦为AB,则圆心C1 到AB的距离为(  )
A.$\frac{\sqrt{2}}{10}$B.$\frac{\sqrt{5}}{10}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,△PAC中,B在边AC上,且AB=BC=1,∠APB=90°,∠BPC=30°,则$\overrightarrow{PA}$•$\overrightarrow{PC}$=$-\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x}-1,(x>0)}\\{-{x}^{3}+1,(x≤0)}\end{array}\right.$,
(I)求函数f(x)的最小值;
(II)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意的x∈R恒成立;命题q:指数函数y=(m2-1)x是增函数,若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案