精英家教网 > 高中数学 > 题目详情
6.已知圆C1:x2+y2-2x=0,圆C2:x2+y2-4y-1=0,两圆的相交弦为AB,则圆心C1 到AB的距离为(  )
A.$\frac{\sqrt{2}}{10}$B.$\frac{\sqrt{5}}{10}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{10}$

分析 把圆C1的方程化为标准形式,求得圆心和半径,把两个圆的方程相减,可得公共弦所在的直线方程,再求出圆心C1 到AB的距离.

解答 解:圆C1:x2+y2-2x=0,即 (x-1)2+y2=1,表示以C1(1,0)为圆心,半径等于1的圆.
把两个圆的方程相减,可得公共弦所在的直线方程为2x-4y-1=0,
C1(1,0)到AB的距离为$\frac{1}{\sqrt{4+16}}$=$\frac{\sqrt{5}}{10}$,
故选B.

点评 本题主要考查两个圆的位置关系及其判定,求两个圆的公共弦所在的直线方程的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x+lg$\sqrt{{x}^{2}+1}$+x)的定义域是R.
(1)判断f(x)在R上的单调性,并证明;
(2)若不等式f(m•3x)+f(3x-9x-4)<0对任意x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a(x<1)}\\{lo{g}_{a}x(x≥1)}\end{array}\right.$是(-∞,+∞)上的减函数,那么a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{3}$)C.[$\frac{1}{7}$,$\frac{1}{3}$)D.[$\frac{1}{7}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin\frac{πx}{4},2≤x≤10}\end{array}\right.$,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则$\frac{({x}_{3}-2)({x}_{4}-2)}{{x}_{1}{x}_{2}}$的取值范围是(0,12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴且长度单位相同,建立极坐标系,设曲线C参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的最大距离,并求出这个点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式log2(4-x)>log2(3x)的解集为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xOy中,双曲线$\frac{{x}^{2}}{7}-\frac{{y}^{2}}{3}$=1的渐近线是y=±$\frac{\sqrt{21}}{7}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=x3-2,则曲线y=f(x)在x=$\frac{1}{2}$处的切线斜率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等差数列{an}的前n项和为Sn.已知a2=3,a9=17,则S10=100.

查看答案和解析>>

同步练习册答案