分析 (1)判断函数的奇偶性,再证明x>0的单调性,得出整个单调性;
(2)利用函数的奇偶性和单调性对不等式进行转化,把恒成立问题转化为最值问题.
解答 (1)因为函数f(x)的定义域为R,对于函数f(x)定义域内的每一个x,都有
f(-x)=-x+lg($\sqrt{{x}^{2}+1}-x$)=-x+lg$\frac{1}{\sqrt{{x}^{2}+1}+x}$=-f(x),.
所以,函数f(x)=x+lg$\sqrt{{x}^{2}+1}$+x)是奇函数.--(2分)
设x1,x2是(0,+∞)上任意两个实数,且x1<x2,则
f(x1)-f(x2)=(x1-x2)+lg$\frac{\sqrt{{{x}_{1}}^{2}+1}+{x}_{1}}{\sqrt{{{x}_{2}}^{2}+1}+{x}_{2}}$..
由x1<x2,
得x1-x2<0,lg$\frac{\sqrt{{{x}_{1}}^{2}+1}+{x}_{1}}{\sqrt{{{x}_{2}}^{2}+1}+{x}_{2}}$<1.
于是f(x1)-f(x2)<0,
即f(x1)<f(x2)=(.
所以函数在(0,+∞)上是增函数,且f(x)>0,、f(0)=0,
根据奇函数的性质可得f(x)在R上的单调递增.
(2)f(m•3x)+f(3x-9x-4)<0 等价于 m•3x<-3x+9x+4,
即 m<3x$+\frac{4}{{3}^{x}}$-1
令t=3x,设函数g(t)=t+$\frac{4}{t}$-1.
由函数g(t)的单调性可知最小值为3,
∴m<3.
∴实数m的取值范围(-∞,3).
点评 考查了函数单调性的证明和奇偶性,单调性的综合应用和恒成立问题的转化思想.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | i≤2014 | B. | i>2014 | C. | i≤2013 | D. | i>2013 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 18 | C. | 16 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{10}$ | B. | $\frac{\sqrt{5}}{10}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com