精英家教网 > 高中数学 > 题目详情
4.如图给出的计算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2014}$的值的一个程序框图,则判断框内应填入的条件是(  )
A.i≤2014B.i>2014C.i≤2013D.i>2013

分析 根据输出S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2014}$,得i=2015时,程序运行终止,可得条件应为:i≤2014或i<2015.

解答 解:由程序框图知:算法的功能是求S=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…,
根据输出S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2014}$,
∴i=2015时,程序运行终止,
∴条件应为:i≤2014或i<2015.
故选:A.

点评 本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答此类问题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设等差数列{an},{bn}的前n项之和分别为Sn、Tn.若对任意n∈N*有①(n+3)Sn=(3n+1)Tn;②a${\;}_{{n}^{2}+27}$≥λ•bn均恒成立,且存在n0∈N*,使得实数λ有最大值,则n0=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四个结论:
①△ABC中,P:A>B,Q:sinA>sinB,P是Q的充分不必要条件
②在频率分布直方图中,中位数左边和右边的直方图的面积相等;
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④命题“?x∈R+,x-lnx>0”的否定是“?x0∈R+,x0-lnx0≤0”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=$\sqrt{2}$,则c=(  )
A.1B.$\frac{1}{2}$C.2D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)=lg(ax2)-lg(3-2x-x2)有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x+lg$\sqrt{{x}^{2}+1}$+x)的定义域是R.
(1)判断f(x)在R上的单调性,并证明;
(2)若不等式f(m•3x)+f(3x-9x-4)<0对任意x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱锥P-ABC中,D,E分别是BC,AC的中点.PB=PC=AB=2,AC=4,BC=2$\sqrt{3}$,PA=$\sqrt{6}$.
(1)求证:平面ABC⊥平面PED;
(2)求AC与平面PBC所成的角;
(3)求平面PED与平面PAB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数g(x)=ax2-(a+1)x+1,f(x)是定义在R上的不恒为零的函数,且对于任意的x,y∈R都满足:f(xy)=xf(y)+yf(x).
(1)求不等式g(x)<0的解集;
(2)当a=1时,若 f(2)=g(2)+1,设an=f(2n)(n∈N*),求数列{an}的通项公式;
(3)在(2)的基础上,若bn=$\frac{n+2}{n+1}$•$\frac{1}{{a}_{n}}$,数列{bn}的前n项和为Sn.求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴且长度单位相同,建立极坐标系,设曲线C参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的最大距离,并求出这个点的坐标.

查看答案和解析>>

同步练习册答案