分析 (1)根据AB,BC,AC边的长度容易得到BC⊥AB,E,D都是中点,从而DE∥AB,这便得到BC⊥DE,而由PB=PC,D为BC边中点,从而便得到BC⊥PD,从而由线面垂直的判定定理即得BC⊥平面PED;
(2)取PD中点F,连接EF,CF,则∠ECF是直线AC和平面PBC所成角,由此能求出直线AC与平面PBC所成角.
(3)以D为原点,分别以DC,DE为x,y轴,建立空间直角坐标系,利用向量法能求出平面PED与平面PAB所成锐二面角的余弦值.
解答 证明:(1)∵PB=PC=AB=2,AC=4,BC=2$\sqrt{3}$,PA=$\sqrt{6}$,![]()
∴AB2+BC2=AC2;
∴BC⊥AB;
D,E分别是BC,AC中点;
∴DE∥AB;
∴BC⊥DE;
又PB=PC,D是BC中点;
∴BC⊥PD,DE∩PD=D;
∴BC⊥平面PED;
解:(2)PA=$\sqrt{6}$,PC=2,AC=4,
∴由余弦定理cos∠PCA=$\frac{7}{8}$,![]()
在△PCE中,PC=2,CE=2,
∴由余弦定理得PE=1,DE=1,∴PD=1;
∴△PDE为等边三角形;
∴如图,取PD中点F,连接EF,CF,则:EF⊥PD;
又BC⊥平面PED,EF?平面PED;
∴BC⊥EF,即EF⊥BC,PD∩BC=D;
∴EF⊥平面PBC;
∴∠ECF是直线AC和平面PBC所成角;
EF=$\frac{\sqrt{3}}{2}$,CE=2;
∴sin∠ECF=$\frac{EF}{CE}$=$\frac{\frac{\sqrt{3}}{2}}{2}$=$\frac{\sqrt{3}}{4}$,
∴直线AC与平面PBC所成角为arcsin$\frac{\sqrt{3}}{4}$.
(3)以D为原点,分别以DC,DE为x,y轴,建立如图所示的空间直角坐标系,
B(-$\sqrt{3}$,0,0),C($\sqrt{3}$,0,0),E(0,1,0),A(-$\sqrt{3}$,2,0),
设P(0,y,z),则由PC=2,PA=$\sqrt{6}$,
得$\left\{\begin{array}{l}{3+{y}^{2}+{z}^{2}=4}\\{3+(y-2)^{2}+{z}^{2}=6}\end{array}\right.$,解得y=$\frac{1}{2}$,z=$\frac{\sqrt{3}}{2}$,∴P(0,$\frac{1}{2},\frac{\sqrt{3}}{2}$),
设平面PAB的法向量$\overrightarrow{n}$=(x1,y1,z1),
∵$\overrightarrow{BA}$=(0,2,0),$\overrightarrow{BP}$=($\sqrt{3},\frac{1}{2},\frac{\sqrt{3}}{2}$),
∴$\left\{\begin{array}{l}{2{y}_{1}=0}\\{\sqrt{3}{x}_{1}+\frac{1}{2}{y}_{1}+\frac{\sqrt{3}}{2}{z}_{1}=0}\end{array}\right.$,取x1=1,得$\overrightarrow{n}$=(1,0,-2),
平面PED的法向量为$\overrightarrow{m}$=(1,0,0),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>
=$\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}$,
∴平面PED与平面PAB所成锐二面角的余弦值为$\frac{\sqrt{5}}{5}$.
点评 本题考查平面与平面垂直的证明,考查线面角的求法,考查二面角的余弦值的求法,是中档题,解题时要注意线面垂直的判定定理,以及余弦定理,线面垂直的性质,线面角的概念及找法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | i≤2014 | B. | i>2014 | C. | i≤2013 | D. | i>2013 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com