精英家教网 > 高中数学 > 题目详情
10.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a(x<1)}\\{lo{g}_{a}x(x≥1)}\end{array}\right.$是(-∞,+∞)上的减函数,那么a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{3}$)C.[$\frac{1}{7}$,$\frac{1}{3}$)D.[$\frac{1}{7}$,1)

分析 根据函数的单调性以及一次函数,对数函数的性质,求出a的范围即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{3a-1<0}\\{3a-1+4a≥0}\\{0<a<1}\end{array}\right.$,
解得:$\frac{1}{7}$≤x<$\frac{1}{3}$,
故选:C.

点评 本题考查了函数的单调性问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设f(x)=x3-$\frac{1}{2}$x2-2x+5.
(Ⅰ)求函数f(x)在(0,5)处的切线方程;
(II)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知平面ABB1N⊥平面BB1C1C,四边形BB1C1C是矩形,ABB1N是梯形,且AN⊥AB,AN∥BB1,AB=BC=AN=4,BB1=8.
(1)求证:BN⊥平面C1B1N;
(2)求直线NC和平面NB1C1所成角的正弦值;
(3)若M为AB中点,在BC边上找一点P,使MP∥平面CNB1,并求$\frac{BP}{PC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=loga(2-ax),(a>0,a≠1)在[0,1]上是减函数,则实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,设点F(2,0),直线l:x=-2,点M为直线l上的一个动点,线段MF与y轴交于点N,E为第一象限内一点,且满足NE⊥MF,ME⊥直线l.
(1)求动点E的轨迹方程C;
(2)过点F做直线交轨迹C于A,B两点,延长OA,OB分别交直线x+y+4=0于P,Q两点,求线段|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(2x-1)=4x2-4x+5,则函数f(x)的解析式为(  )
A.f(x)=x2-2B.f(x)=x2+4C.f(x)=2x2+2x-5D.f(x)=x2-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2ex,g(x)=ax+2.记F(x)=f(x)-g(x).
(Ⅰ)讨论函数F(x)的单调性;
(Ⅱ)若F(x)≥0恒成立,求证:x1<x2时,$\frac{F({x}_{2})-F({x}_{1})}{{x}_{2}-{x}_{1}}$>2(e${\;}^{{x}_{1}}$-1)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知圆C1:x2+y2-2x=0,圆C2:x2+y2-4y-1=0,两圆的相交弦为AB,则圆心C1 到AB的距离为(  )
A.$\frac{\sqrt{2}}{10}$B.$\frac{\sqrt{5}}{10}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集U={1,2,3,4},集合A={1,2},则∁UA=(  )
A.{4}B.{3,4}C.{3}D.{1,3,4}

查看答案和解析>>

同步练习册答案