精英家教网 > 高中数学 > 题目详情

【题目】设函数 ).

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数处取得极大值,求正实数的取值范围.

【答案】(I)详见解析;(II).

【解析】试题分析:

(1)首先求得函数的导函数,然后结合参数分类讨论,

时, 的单调增区间为

时, 的单调增区间为,单调减区间为

(2)求解的导函数,结合的结论分类讨论可得正实数的取值范围为

试题解析:(Ⅰ)由

所以

时, ,函数上单调递增;

时, ,函数单调递增, 时, ,函数单调递减.

所以当时, 的单调增区间为

时, 的单调增区间为,单调减区间为

(Ⅱ)因为

所以

由(Ⅰ)知①当时, ,由(Ⅰ)知内单调递增,可得当时, ,当时,

所以内单调递减,在内单调递增,所以处取得极小值,不合题意.

②当时, 内单调递增,在内单调递减,所以当时, 单调递减,不合题意.

③当时, ,当时, 单调递增,当时, 单调递减.

所以处取极大值,符合题意.

综上可知,正实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.

(1)求椭圆的离心率;

(2)若,设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点,若点在以为直径的圆内部,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,3sinA+4cosB=6,3cosA+4sinB=1,则∠C的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于,总有.(i)求实数的范围; (ii)求证:对于,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),若椭圆上的一动点到右焦点的最短距离为,且右焦点到直线的距离等于短半轴的长,已知,过的直线与椭圆交于两点.

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an
(2)若数列{an}为等差数列,且A=1,C=﹣2. ①设bn=2nan , 求数列{bn}的前n项和;
②设cn= ,若不等式cn 对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某算法的程序图如图所示,其中输入的变量x在1,2,3,…,30这30个整数中等可能随机产生.
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据: 甲的频数统计表(部分)

运行次数

输出y=1的频数

输出y=2的频数

输出y=3的频数

50

24

19

7

2000

1027

776

197

乙的频数统计表(部分)

运行次数

输出y=1的频数

输出y=2的频数

输出y=3的频数

50

26

11

13

2000

1051

396

553

当n=2000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在矩形中, 的中点,将三角形沿翻折到图②的位置,使得平面平面.

(Ⅰ)在线段上确定点,使得平面,并证明;

(Ⅱ)求所在平面构成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点为椭圆上一点. 的重心为,内心为,且,则该椭圆的离心率为(

A. B. C. D.

查看答案和解析>>

同步练习册答案