【题目】设函数, ().
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在处取得极大值,求正实数的取值范围.
【答案】(I)详见解析;(II).
【解析】试题分析:
(1)首先求得函数的导函数,然后结合参数分类讨论,
当时, 的单调增区间为;
当时, 的单调增区间为,单调减区间为.
(2)求解的导函数,结合的结论分类讨论可得正实数的取值范围为.
试题解析:(Ⅰ)由, ,
所以.
当, 时, ,函数在上单调递增;
当, 时, ,函数单调递增, 时, ,函数单调递减.
所以当时, 的单调增区间为;
当时, 的单调增区间为,单调减区间为.
(Ⅱ)因为,
所以且.
由(Ⅰ)知①当时, ,由(Ⅰ)知在内单调递增,可得当时, ,当时, .
所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.
②当时, , 在内单调递增,在内单调递减,所以当时, , 单调递减,不合题意.
③当时, ,当时, , 单调递增,当时, , 单调递减.
所以在处取极大值,符合题意.
综上可知,正实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.
(1)求椭圆的离心率;
(2)若,设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点,若点在以为直径的圆内部,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(),若椭圆上的一动点到右焦点的最短距离为,且右焦点到直线的距离等于短半轴的长,已知,过的直线与椭圆交于两点.
(1)求椭圆的方程;
(2)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an;
(2)若数列{an}为等差数列,且A=1,C=﹣2. ①设bn=2nan , 求数列{bn}的前n项和;
②设cn= ,若不等式cn≥ 对任意n∈N*恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某算法的程序图如图所示,其中输入的变量x在1,2,3,…,30这30个整数中等可能随机产生.
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据: 甲的频数统计表(部分)
运行次数 | 输出y=1的频数 | 输出y=2的频数 | 输出y=3的频数 |
50 | 24 | 19 | 7 |
… | … | … | … |
2000 | 1027 | 776 | 197 |
乙的频数统计表(部分)
运行次数 | 输出y=1的频数 | 输出y=2的频数 | 输出y=3的频数 |
50 | 26 | 11 | 13 |
… | … | … | … |
2000 | 1051 | 396 | 553 |
当n=2000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在矩形中, , 是的中点,将三角形沿翻折到图②的位置,使得平面平面.
(Ⅰ)在线段上确定点,使得平面,并证明;
(Ⅱ)求与所在平面构成的锐二面角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com