精英家教网 > 高中数学 > 题目详情
9.某几何体的三视图如图所示,则该几何体的外接球表面积为12π.

分析 由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.

解答 解:由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,
底面为等腰直角三角形,斜边长为2$\sqrt{2}$,如图:
∴△ABC的外接圆的圆心为斜边AC的中点D,OD⊥AC,且OD?平面SAC,
∵SA=AC=2,∴SC的中点O为外接球的球心,
∴半径R=$\sqrt{3}$,
∴外接球表面积S=4π×3=12π.
故答案为:12π.

点评 本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知圆O:x2+y2+6x-2y+6=0,若斜率存在且不等于0的直线l过点A(4,0)且被圆O截得的弦长为2$\sqrt{3}$,则直线l的方程为(  )
A.24x+7y-28=0B.7x+24y-28=0C.24x-7y-28=0D.7x-24y-28=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个几何体的三视图如图所示(单位:cm),则该几何体的表面积为64+32$\sqrt{2}$cm2,体积为$\frac{160}{3}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等比数列{an}中,已知a1+a2=10,a9+a10=90,则 a5+a6=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,若A=60°,b=4,此三角形面积S=2$\sqrt{3}$,则a的值是(  )
A.2$\sqrt{3}$B.3$\sqrt{3}$C.4$\sqrt{3}$D.5$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|0<x-m<3},B={x|x≤0或x≥3},
(1)当m=1时,求A∩B
(2)当A∪B=B时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=sinωx-cosωx(ω>$\frac{1}{4}$,x∈R),若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间(2π,3π),则ω的取值范围是(  )
A.[$\frac{3}{8}$,$\frac{11}{12}$]∪[$\frac{11}{8}$,$\frac{19}{12}$]B.($\frac{1}{4}$,$\frac{5}{12}$]∪[$\frac{5}{8}$,$\frac{3}{4}$]
C.[$\frac{3}{8}$,$\frac{7}{12}$]∪[$\frac{7}{8}$,$\frac{11}{12}$]D.($\frac{1}{4}$,$\frac{3}{4}$]∪[$\frac{9}{8}$,$\frac{17}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若${log_a}\frac{4}{5}<1$(a>0,且a≠1),则实数a的取值范围是(  )
A.$(0,\frac{4}{5})$B.$(\frac{4}{5},+∞)$C.$(\frac{4}{5},1)$D.$(0,\frac{4}{5})∪(1,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知Sn为等比数列{an}的前n项和,且S5=S4-2a4,则$\frac{{S}_{5}}{{S}_{4}}$等于(  )
A.-$\frac{33}{15}$B.$\frac{33}{15}$C.-$\frac{33}{17}$D.$\frac{33}{17}$

查看答案和解析>>

同步练习册答案