精英家教网 > 高中数学 > 题目详情
15.已知圆C:(x-2$\sqrt{2}$)2+(y-1)2=1和两点A(-t,0)、B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则t的最小值为(  )
A.4B.3C.2D.1

分析 圆C:(x-2$\sqrt{2}$)2+(y-1)2=1的圆心C(2$\sqrt{2}$,1),半径r=1,设P(a,b)在圆C上,则$\overrightarrow{AP}$=(a+t,b),$\overrightarrow{BP}$=(a-t,b),由已知得t2=a2+b2=|OP|2,t的最小值即为|OP|的最小值.

解答 解:圆C:(x-2$\sqrt{2}$)2+(y-1)2=1的圆心C(2$\sqrt{2}$,1),半径r=1,
设P(a,b)在圆C上,则$\overrightarrow{AP}$=(a+t,b),$\overrightarrow{BP}$=(a-t,b),
∵∠APB=90°,
∴$\overrightarrow{AP}$⊥$\overrightarrow{BP}$,
∴$\overrightarrow{AP}$•$\overrightarrow{BP}$=(a+t)(a-t)+b2=0,
∴t2=a2+b2=|OP|2
∴t的最小值即为|OP|的最小值,等于|OC|-r=3-1=2
故选:C.

点评 本题考察圆与直线方程的综合应用以及两点间距离公式,解决此类问题,注意采用数形结合思想,可较快得到答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρ2=$\frac{15}{1+2co{s}^{2}θ}$,直线l:y=$\frac{\sqrt{3}}{3}$x.
(I)写出直线l的参数方程与极坐标方程;
(Ⅱ)设直线l与曲线C的两个交点分别为A、B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C:x2+y2-2x-4y+1=0上存在两点关于直线l:x+my+1=0对称,经过点M(m,m)作圆C的切线,切点为P,则|MP|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x,y∈R,若|x|+|y+1|+|x-1|+|y-2|≤4,则x+y的取值范围为[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.记a(m,n)(m,n∈N*)表示从n起连续m(m>1)个正整数的和.
(1)则a(2,3)=7;
(2)将2016写成a(m,n)的形式是(3,671).(只须写出一种正确结果即可)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆C的方程是(x-2)2+(y-2)2=4,动直线l:y=mx+(1-m)与圆C交于A,B两点,当△ABC面积取得最大值时,m的值为(  )
A.-1B.2C.-3D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.根据下列条件,求二次函数的解析式
(1)已知一次函数的图象过点(-2,0),(1,0),(2,4),求此二次函数的解析式;
(2)已知二次函数的图象过点(-2,1),(0,1),且顶点到x轴的距离为2,求此二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=log2(x+1)的定义域是(  )
A.{x|x>-1}B.{x|x≠-1}C.{x|x>1}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{a-1}{x}$+2a(a∈R)
(Ⅰ)若f(x)的图象在点(1,f(1))处的切线与直线x+2y-1=0垂直,求a的值;
(Ⅱ)若f(x)≤ax+1在[1,+∞)恒成立,求a的取值范围;
(Ⅲ)若n∈N*,证明:ln(n+1)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{n}{2(n+1)}$.

查看答案和解析>>

同步练习册答案