精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的通顶公式an=$\frac{1}{{n}^{2}+3n+2}$,求前n项Sn

分析 由an=$\frac{1}{{n}^{2}+3n+2}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,运用裂项相消求和,即可得到所求.

解答 解:an=$\frac{1}{{n}^{2}+3n+2}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
即有前n顶和Sn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$+$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n}{2(n+2)}$.

点评 本题考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(ax-5)cosx-asinx(0≤x≤π),其中a为正实数.
(Ⅰ)当a=1时,求f(x)在[0,π]上的零点个数.
(Ⅱ)对于定义域内的任意x1,x2,将|f(x1)-f(x2)|的最大值记作g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.现有一块正三棱锥形石料,其三条侧棱两两互相垂直,且侧棱长为1m,若要将这块石料打磨成一个石球,则所得石球的最大半径为$\frac{3-\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.f(x)=$\frac{x}{x-a}$(x≠a),若a>0,且函数f(x)在区间(1,+∞)内单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)是定义在(-∞,0)∪(0,+∞)的偶函数,且当x>0时,f(x)=x+$\frac{1}{x}$.
(1)求f(x)的解析式;
(2)作出该函数在定义域内的图象,并结合图象说出f(x)的单调性;
(3)求该函数f(x)在[-4,-1]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知二次函数y=(a-1)x2+2ax+3a-2的图象最低点在x轴上,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期是π,问:当x取何值时,函数有最小值-1?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$\frac{2sinα-cosα}{sinα+2cosα}$=$\frac{3}{4}$,则tanα的值为(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知|$\overrightarrow{a}$|=2,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3}{4}$π,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影是-$\sqrt{2}$.

查看答案和解析>>

同步练习册答案