精英家教网 > 高中数学 > 题目详情
7.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤4}\\{x-y≤2}\\{x≥0,y≥0}\end{array}\right.$则2x+y的最大值是7.

分析 根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.

解答 解:满足约束条件$\left\{\begin{array}{l}{x+y≤4}\\{x-y≤2}\\{x≥0,y≥0}\end{array}\right.$的可行域如下图中阴影部分所示:

∵目标函数Z=2x+y,
∴ZO=0,ZA=4,ZB=7,ZC=4,
故2x+y的最大值是7,
故答案为:7.

点评 用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.向量$\overrightarrow{a}$=(1,-1,1),$\overrightarrow{b}$=(-1,2,1),且k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$-3$\overrightarrow{b}$垂直,则k的值是-$\frac{20}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)是定义域为(-1,1),且满足f(x+y)=f(x)+f(y),且f(x)在(-1,1)上是减函数.
(1)若f(-$\frac{1}{4}$)=-$\frac{1}{4}$,求f($\frac{1}{2}$);
(2)解不等式f(1-x)+f(1-x2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于数列{an}(n=1,2,…),下列说法正确的是(  )
A.{an}为首项为正项的等比数列,若a2n-1+a2n<0,则公比q<0
B.若{an}为递增数列,则an+1>|an|
C.{an}为等差数列,若Sn+1>Sn,则{an}单调递增
D.{an}为等差数列,若{an}单调递增,则Sn+1>Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆台的两个底面面积分别为4π和25π,圆台的高为4,求圆台的体积与侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{64}{3}$+8πB.24+8πC.16+8πD.8+16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=x-1的斜率等于(  )
A.-1B.1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知变量x,y满足$\left\{\begin{array}{l}{x-4y+3≤0}\\{x+y-4≤0}\\{x≥1}\end{array}\right.$,则z=x-y的取值范围是(  )
A.[-2,-1]B.[-2,0]C.[0,$\frac{6}{5}$]D.[-2,$\frac{6}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)的定义域为R.?a,b∈R,若此函数同时满足:
①当a+b=0时,有f(a)+f(b)=0;
②当a+b>0时,有f(a)+f(b)>0,
则称函数f(x)为Ω函数.
在下列函数中:
①y=x+sinx;
②y=3x-($\frac{1}{3}$)x
③y=$\left\{\begin{array}{l}{0,x=0}\\{-\frac{1}{x},x≠0}\end{array}\right.$
是Ω函数的为①②.(填出所有符合要求的函数序号)

查看答案和解析>>

同步练习册答案