精英家教网 > 高中数学 > 题目详情
18.已知数列{an}满足$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+…+$\frac{{a}_{n}-1}{{2}^{n}}$=n2+n(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,问是否存在实数λ使得$\frac{{{S_{n+1}}}}{{{a_n}+λ(n+1)}}$是一个与n无关的常数,若存在,求出λ的值,若不存在,请说明理由.

分析 (1)由已知得$\frac{{a}_{n}-1}{{2}^{n}}$=2n,从而an=1+n•2n+1
(2)Sn=1×22+2×23+…+n×2n+1+n,由此利用错位相减法能求出数列{an}前n项和Sn,设$\frac{{{S_{n+1}}}}{{{a_n}+λ(n+1)}}$=$\frac{n•{2}^{n+3}+n+5}{1+n•{2}^{n+1}+λ(n+1)}$=k>0,k为常数,整理得到n•2n+1(4-k)+(n+1)(1-kλ)+4-k=0,由数λ使得$\frac{{{S_{n+1}}}}{{{a_n}+λ(n+1)}}$是一个与n无关的常数,即可求出λ的值.

解答 解:(1)∵$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+…+$\frac{{a}_{n}-1}{{2}^{n}}$=n2+n,①
∴$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+…+$\frac{{a}_{n-1}-1}{{2}^{n-1}}$=(n-1)2+(n-1),②
①-②得:$\frac{{a}_{n}-1}{{2}^{n}}$=2n,
∴an-1=n•2n+1
∴an=1+n•2n+1
(2)Sn=1×22+2×23+…+n×2n+1+n,
设Tn=1×22+2×23+…+n×2n+1,③
则2Tn=1×23+2×24+…+n×2n+2,④
③-④,得-Tn=22+23+24+…+2n+1-n×2n+2=$\frac{4(1-{2}^{n})}{1-2}$-n×2n+2
∴Tn=(n-1)•2n+2+4,
∴Sn=(n-1)•2n+2+n+4,
∴Sn+1=n•2n+3+n+5,
设$\frac{{{S_{n+1}}}}{{{a_n}+λ(n+1)}}$=$\frac{n•{2}^{n+3}+n+5}{1+n•{2}^{n+1}+λ(n+1)}$=k>0,k为常数,
∴n•2n+1(4-k)+(n+1)(1-kλ)+4-k=0,
∵实数λ使得$\frac{{{S_{n+1}}}}{{{a_n}+λ(n+1)}}$是一个与n无关的常数,
∴4-k=0,1-kλ=0,
解得λ=$\frac{1}{4}$,
故λ=$\frac{1}{4}$.

点评 本题考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用以及方程的思想,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在正项等比数列中a3=125,a1=25,则公比q=(  )
A.5B.3C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线x-2y-6=0与直线2x+my+5=0互相垂直,则实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=|x|-1的减区间为(  )
A.(-∞,0)B.(-∞,-1)C.(0,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}、{bn}满足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1-{{a}_{n}}^2}$
(1)证明数列{$\frac{1}{{b}_{n}-1}$}是等差数列   
(2)求数列{bn}的通项公式;
(3)若bn>k对任意的n∈N*恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=asinx-$\frac{1}{2}$cos2x-$\frac{3}{a}$+$\frac{1}{2}$(a∈R,a≠0),若对任意x∈R都有f(x)<0,则a的取值范围是(  )
A.[-$\frac{3}{2}$,0)B.[-1,0)∪(0,1]C.(0,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,若直线AB过F1,与椭圆交于A,B两点,且|AB|=|BF2|,AB⊥BF2,则椭圆的离心率为$\sqrt{6}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-3ax2-9a2x+a3
(1)设a=1,求函数f(x)的极值;
(2)若$\frac{1}{4}$<a≤1,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$x2+alnx.
(1)若a=-1,求函数f(x)的单调区间.
(2)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=$\frac{2}{3}$x3的图象下方.

查看答案和解析>>

同步练习册答案