精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=asinx-$\frac{1}{2}$cos2x-$\frac{3}{a}$+$\frac{1}{2}$(a∈R,a≠0),若对任意x∈R都有f(x)<0,则a的取值范围是(  )
A.[-$\frac{3}{2}$,0)B.[-1,0)∪(0,1]C.(0,1]D.[1,3]

分析 利用三角函数的有界性、一次函数的单调性即可得出.

解答 解:f(x)=sin2x+asinx+a-$\frac{3}{a}$,令t=sinx(-1≤t≤1),
则g(t)=t2+at+a-$\frac{3}{a}$,
对任意x∈R,f(x)≤0恒成立的充要条件是$\left\{\begin{array}{l}{g(-1)=1-\frac{3}{a}≤0}\\{g(1)=1+2a-\frac{3}{a}≤0}\end{array}\right.$,
解得a的取值范围是(0,1].
故选:C.

点评 本题考查了通过换元转化为一次函数的单调性、三角函数的有界性等基础知识与基本技能方法,考查了计算能力和转化能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.有下列推理:
①A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则P的轨迹为椭圆;
②由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式;
③由圆x2+y2=r2的面积S=πr2,猜想出椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的面积S=πab;
④科学家利用鱼的沉浮原理制造潜艇.以上推理不是归纳推理的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在空间四边形ABCD中,AD、CD、AB、BD的中点分别为E、F、G、H.已知AD=1,BC=$\sqrt{3}$,且,对角线$BD=\frac{{\sqrt{13}}}{2},AC=\frac{{\sqrt{3}}}{2}$.求证:△EFG为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式($\frac{a}{{e}^{a}}$-b)2≥m-(a-b+3)2对任意实数a,b恒成立,则实数m的最大值是(  )
A.$\frac{9}{2}$B.$\frac{3\sqrt{2}}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+…+$\frac{{a}_{n}-1}{{2}^{n}}$=n2+n(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,问是否存在实数λ使得$\frac{{{S_{n+1}}}}{{{a_n}+λ(n+1)}}$是一个与n无关的常数,若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆的长轴和短轴都在坐标轴上,中心在原点,且经过定点(3,0),长轴长是短轴长的3倍,则椭圆的方程为(  )
A.$\frac{{x}^{2}}{9}+{y}^{2}$=1B.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1
C.$\frac{{x}^{2}}{9}+{y}^{2}$=1或 $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1D.$\frac{{x}^{2}}{81}+\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将石子摆成如图所示的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 014项与5的差,即a2014-5=(  )
A.2 018×2 012B.2 020×2 013C.1 009×2 012D.1 010×2 013

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为10m,8m,14m,这个区域的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{2^x}-1,x≥2\\-{x^3}+3x,x<2\end{array}$,若函数y=f(x)-m有2个零点,则实数m的取值范围是m=2或m≥3.

查看答案和解析>>

同步练习册答案