精英家教网 > 高中数学 > 题目详情
15.将石子摆成如图所示的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 014项与5的差,即a2014-5=(  )
A.2 018×2 012B.2 020×2 013C.1 009×2 012D.1 010×2 013

分析 根据前面图形中,编号与图中石子的个数之间的关系,分析他们之间存在的关系,并进行归纳,用得到一般性规律,即可求得结论.

解答 解:由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:
n=1时,a1=2+3=$\frac{1}{2}$×(2+3)×2;
n=2时,a2=2+3+4=$\frac{1}{2}$×(2+4)×3;

由此我们可以推断:
an=2+3+…+(n+2)=$\frac{1}{2}$×[2+(n+2)]×(n+1)
∴a2014-5=$\frac{1}{2}$×[2+(2014+2)]×(2014+1)-5=1010×2013.
故选D.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在复平面内复数1+i,1-i对应的点分别为A,B,若点C为线段AB的中点,则点C对应的复数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=|x|-1的减区间为(  )
A.(-∞,0)B.(-∞,-1)C.(0,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=asinx-$\frac{1}{2}$cos2x-$\frac{3}{a}$+$\frac{1}{2}$(a∈R,a≠0),若对任意x∈R都有f(x)<0,则a的取值范围是(  )
A.[-$\frac{3}{2}$,0)B.[-1,0)∪(0,1]C.(0,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,若直线AB过F1,与椭圆交于A,B两点,且|AB|=|BF2|,AB⊥BF2,则椭圆的离心率为$\sqrt{6}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果函数f(x)=-x2+2x+c的最大值为3,则实数c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-3ax2-9a2x+a3
(1)设a=1,求函数f(x)的极值;
(2)若$\frac{1}{4}$<a≤1,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,$\frac{{\overrightarrow{AB}•\overrightarrow{BC}}}{3}$=$\frac{{\overrightarrow{BC}•\overrightarrow{CA}}}{2}$=$\frac{{\overrightarrow{CA}•\overrightarrow{AB}}}{1}$,则sinA:sinB:sinC=(  )
A.5:3:4B.5:4:3C.$\sqrt{5}$:$\sqrt{3}$:2D.$\sqrt{5}$:2:$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求函数f(x)=$\frac{\sqrt{4-x}}{x-1}$的定义域.
(2)若f(x-1)=x2+2x+3,求f(x)的解析式.
(3)求函数f(x)=x2-2x+3在[0,3]上的最大值与最小值.

查看答案和解析>>

同步练习册答案