精英家教网 > 高中数学 > 题目详情
8.已知椭圆的长轴和短轴都在坐标轴上,中心在原点,且经过定点(3,0),长轴长是短轴长的3倍,则椭圆的方程为(  )
A.$\frac{{x}^{2}}{9}+{y}^{2}$=1B.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1
C.$\frac{{x}^{2}}{9}+{y}^{2}$=1或 $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1D.$\frac{{x}^{2}}{81}+\frac{{y}^{2}}{9}$=1

分析 分椭圆的焦点在x轴上和焦点在y轴上两种情况加以讨论,分别设出椭圆标准方程,由题意求得a和b的值,即可求得椭圆方程.

解答 解:当椭圆的焦点在x轴上,设椭圆方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
由题意可知:a=3,则b=1,
∴椭圆方程为:$\frac{{x}^{2}}{9}+{y}^{2}=1$,
当椭圆的焦点在y轴上,设椭圆方程为:$\frac{{x}^{2}}{{b}^{2}}+\frac{{y}^{2}}{{a}^{2}}=1$(a>b>0),
由题意可知:b=3,则a=9,
则椭圆方程为:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}=1$,
故答案选:C.

点评 本题考查椭圆的标准方程及简单几何性质,考查分类讨论思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,定义d(P1,P2)=max{|x1-x2|,|y1-y2|}为两点P1(x1,y1),P2(x2,y2)的“切比雪夫距离”,则点P(3,1)到直线y=2x-1上一点的“切比雪夫距离”的最小值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的角A、B、C的对边分别为a、b、c,其面积$S=4\sqrt{3}$,∠B=60°,且a2+c2=2b2;等差数列{an}中,且a1=a,公差d=b.数列{bn}的前n项和为Tn,且Tn-2bn+2=0,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)设${c_n}=\left\{{\begin{array}{l}{{a_n},n为奇数}\\{{b_n}\;\;,n为偶数}\end{array}}\right.$,求数列{cn}的前2n+1项和T2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=asinx-$\frac{1}{2}$cos2x-$\frac{3}{a}$+$\frac{1}{2}$(a∈R,a≠0),若对任意x∈R都有f(x)<0,则a的取值范围是(  )
A.[-$\frac{3}{2}$,0)B.[-1,0)∪(0,1]C.(0,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)过点Q(-1,$\frac{\sqrt{2}}{2}$),且离心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知过点(2,0)的直线l与该椭圆相交于A、B两点,当|AB|=$\frac{2\sqrt{5}}{3}$时,求直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果函数f(x)=-x2+2x+c的最大值为3,则实数c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的表面积为28+4$\sqrt{10}$;体积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a为常数,函数f(x)=x(lnx-ax)有两个极值点x1,x2(x1<x2),则a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

同步练习册答案