精英家教网 > 高中数学 > 题目详情
17.一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的表面积为28+4$\sqrt{10}$;体积为8.

分析 几何体为正四棱柱中挖去一个正四棱锥得到的几何体,即可求出几何体的表面积、体积.

解答 解:由三视图可知几何体为正四棱柱中挖去一个正四棱锥得到的几何体,
S=2×2+4×2×3+4×$\frac{1}{2}×2×$$\sqrt{10}$=28+4$\sqrt{10}$,V=2×2×3-$\frac{1}{3}$×2×2×3=8.
故答案为:28+4$\sqrt{10}$,

点评 本题考查了常见几何体的三视图与体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图所示,已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的半径为(  )
A.6B.8C.36D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆的长轴和短轴都在坐标轴上,中心在原点,且经过定点(3,0),长轴长是短轴长的3倍,则椭圆的方程为(  )
A.$\frac{{x}^{2}}{9}+{y}^{2}$=1B.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1
C.$\frac{{x}^{2}}{9}+{y}^{2}$=1或 $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1D.$\frac{{x}^{2}}{81}+\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若R上的奇函数y=f(x)的图象关于直线x=1对称,且当0<x≤1时,f(x)=log2x,则方程f(x)=f(0)+$\frac{1}{4}$在区间(2014,2016)内的所有实数根之和为(  )
A.4028B.4030C.4032D.4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为10m,8m,14m,这个区域的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆以抛物线y2=4x的顶点为中心,以此抛物线的焦点为右焦点,又椭圆的短轴长为2,则此椭圆方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=lg$\frac{1+x}{1-x}$(-<x,1).
(I) 判断f(x)的奇偶性,并予以证明;
(Ⅱ)设f($\frac{1}{2}$)+f($\frac{1}{3}$)=f(x0),求x0的值.
(Ⅲ)求证:对于f(x)的定义域内的任意两个实数a,b,都有f(a)+f(b)=f($\frac{a+b}{1+ab}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义集合A-B={x|x∈A且x∉B},若集合A={1,3,4,5},B={2,3,4},则集合A-B的元素个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲乙两人投球命中率分别为0.5、0.4,甲乙两人各投一次,恰好命中一次的概率为(  )
A.0.5B.0.4C.0.2D.0.9

查看答案和解析>>

同步练习册答案