精英家教网 > 高中数学 > 题目详情
5.若R上的奇函数y=f(x)的图象关于直线x=1对称,且当0<x≤1时,f(x)=log2x,则方程f(x)=f(0)+$\frac{1}{4}$在区间(2014,2016)内的所有实数根之和为(  )
A.4028B.4030C.4032D.4034

分析 由奇函数f(x)的图象关于直线x=1对称可得f(x+4)=f(x),再利用f(0)=0,及0<x≤1时,f(x)=log2x,数形结合,可求得方程f(x)=$\frac{1}{4}$+f(0)=$\frac{1}{4}$在区间(2014,2016)内的所有实根之和.

解答 解:∵函数y=f(x)的图象关于直线x=1对称,
∴f(2-x)=f(x),又y=f(x)为奇函数,
∴f(x+2)=f(-x)=-f(x),
∴f(x+4)=-f(x+2)=f(x),即f(x)的周期为4,
又定义在R上的奇函数,故f(0)=0,
∵f(x)=f(0)+$\frac{1}{4}$,∴f(x)=$\frac{1}{4}$,
∵0<x≤1时,f(x)=log2x≤0,
∴f(x)=$\frac{1}{4}$在(0,1)内没有一实根,在(-1,0)内有一实数根x1
又函数f(x)的图象关于直线x=1对称,
∴f(x)=$\frac{1}{4}$在(2,3)有一个实根x2,且x1+x2=2;
∵f(x)的周期为4,
当2014<x<2016时,函数的图象与2<x<4的图象一样.
∴原方程在区间(2014,2016)内的实根有2个,设为a,b,则$\frac{a+b}{2}$=2015
∴a+b=4030.
故选:B.

点评 本题考查根的存在性及根的个数判断及奇偶函数图象的对称性,关键在于判断f(x)的周期为4,再结合0<x≤1时,f(x)=log2x与奇函数f(x)的图象关于直线x=1对称,数形结合予以解决,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某餐饮业培训学校对男、女各20名学员进行考评,考评成绩(满分100分)如茎叶图所示:
(I)若大于或等于80分为优秀学员,80分以下为非优秀学员,根据茎叶图填写2×2列联表,并判断能否有95%的把握认为学员的优秀与性别有关?
非优秀优秀总数
20
20
总数40
(Ⅱ)若从考评成绩95分以上(包括95分)的学员中任选两人代表学校参加上一级单位举办的服务比赛,求至少有一名男学员参加的概率.
下面的临界值表供参考:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)过点Q(-1,$\frac{\sqrt{2}}{2}$),且离心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知过点(2,0)的直线l与该椭圆相交于A、B两点,当|AB|=$\frac{2\sqrt{5}}{3}$时,求直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果函数f(x)=-x2+2x+c的最大值为3,则实数c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在对两个变量x、y进行线性回归分析时一般有下列步骤:
①对所求出的回归方程作出解释;②收集数据(xi,yi),i=1,2,…n
③求线性回归方程;                  ④根据所搜集的数据绘制散点图.
若根据实际情况能够判定变量x、y具有线性相关性,则在下列操作顺序中正确的是(  )
A.①②④③B.③②④①C.②③①④D.②④③①

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的表面积为28+4$\sqrt{10}$;体积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图给出了幂函数y=xa,y=xb,y=xc的图象,则实数a,b,c,0,1的大小关系为a>1>b>0>c.(五个数从小到大排列)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知全集U={0,1,2,3,4,5},集合A=∅,则∁UA={0,1,2,3,4,5}.

查看答案和解析>>

同步练习册答案