精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{2^x}-1,x≥2\\-{x^3}+3x,x<2\end{array}$,若函数y=f(x)-m有2个零点,则实数m的取值范围是m=2或m≥3.

分析 画出函数f(x)的图象,结合图象,求出m的范围即可.

解答 解:画出函数f(x)的图象,如图示:

若函数y=f(x)-m有2个零点,
结合图象:m=2或m≥3,
故答案为:m=2或m≥3.

点评 本题考查了函数零点问题,考查数形结合思想以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=asinx-$\frac{1}{2}$cos2x-$\frac{3}{a}$+$\frac{1}{2}$(a∈R,a≠0),若对任意x∈R都有f(x)<0,则a的取值范围是(  )
A.[-$\frac{3}{2}$,0)B.[-1,0)∪(0,1]C.(0,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,$\frac{{\overrightarrow{AB}•\overrightarrow{BC}}}{3}$=$\frac{{\overrightarrow{BC}•\overrightarrow{CA}}}{2}$=$\frac{{\overrightarrow{CA}•\overrightarrow{AB}}}{1}$,则sinA:sinB:sinC=(  )
A.5:3:4B.5:4:3C.$\sqrt{5}$:$\sqrt{3}$:2D.$\sqrt{5}$:2:$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且b=$\sqrt{3}$,cosAsinB+(c-sinA)cos(A+C)=0.
(1)求角B的大小;
(2)若△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求sinA+sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$x2+alnx.
(1)若a=-1,求函数f(x)的单调区间.
(2)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=$\frac{2}{3}$x3的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a为常数,函数f(x)=x(lnx-ax)有两个极值点x1,x2(x1<x2),则a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求函数f(x)=$\frac{\sqrt{4-x}}{x-1}$的定义域.
(2)若f(x-1)=x2+2x+3,求f(x)的解析式.
(3)求函数f(x)=x2-2x+3在[0,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ x-2y+1≥0\\ x-y≤0\end{array}\right.$,且目标函数之z=ax+by (a>0,b>0)的最大值为2,则$\frac{2}{a}$+$\frac{1}{b}$的最小值为$\frac{1}{2}(3+2\sqrt{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某公司生产的某产品每件成本为40元,经市场调查整理出如下信息:
时间:(第x天)13610
日销量(m件)198194188180
①该产品90天内日销量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内销售价格(元/件)与时间(第x天)的关系如下表:
时间:(第x天)1≤x<5050≤x<90
销售价格(元/件)x+60100
(1)求m关于x的函数关系;
(2)设销售该产品每天利润为y元,求y关于x的函数表达式;并求出在90天内该产品哪天的销售利润最大?最大利润是多少?[每天利润=日销量x(销售价格-每件成本)].

查看答案和解析>>

同步练习册答案