精英家教网 > 高中数学 > 题目详情
2.已知实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ x-2y+1≥0\\ x-y≤0\end{array}\right.$,且目标函数之z=ax+by (a>0,b>0)的最大值为2,则$\frac{2}{a}$+$\frac{1}{b}$的最小值为$\frac{1}{2}(3+2\sqrt{2})$.

分析 由约束条件作出可行域,并找出目标函数取得最大值时的条件,进而利用基本不等式的性质即可求出.

解答 解:由x,y满足线性约束条件$\left\{\begin{array}{l}x≥0\\ x-2y+1≥0\\ x-y≤0\end{array}\right.$,作出可行域.
联立$\left\{\begin{array}{l}{x-y=0}\\{x-2y+1=0}\end{array}\right.$,解得A(2,1).
由可行域可知:当目标函数经过点A时z取得最大值2,
∴a+b=2(a>0,b>0),
∴$\frac{2}{a}$+$\frac{1}{b}$=$\frac{1}{2}$($\frac{2}{a}$+$\frac{1}{b}$)(a+b)=$\frac{1}{2}$(3+$\frac{2b}{a}+\frac{a}{b}$)≥$\frac{1}{2}(3+2\sqrt{\frac{2b}{a}•\frac{a}{b}})$=$\frac{1}{2}(3+2\sqrt{2})$,
当且仅当$\frac{2b}{a}=\frac{a}{b}$,a+b=2时取等号.
故答案为:$\frac{1}{2}(3+2\sqrt{2})$.

点评 本题考查线性规划的有关内容及基本不等式的运用,确定a+b=2,正确运用基本不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为10m,8m,14m,这个区域的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{2^x}-1,x≥2\\-{x^3}+3x,x<2\end{array}$,若函数y=f(x)-m有2个零点,则实数m的取值范围是m=2或m≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点A、B、C、D在同一球面上,AB=BC=$\sqrt{2}$,AC=2,DB⊥平面ABC,四面体ABCD的体积为$\frac{2}{3}$,则这个球的体积为(  )
A.B.$\frac{8\sqrt{2}π}{3}$C.16πD.$\frac{32π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}x+1,x≥0\\{x^2}-1,x<0\end{array}$,则f(f(-2))=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲乙两人投球命中率分别为0.5、0.4,甲乙两人各投一次,恰好命中一次的概率为(  )
A.0.5B.0.4C.0.2D.0.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图所示,M,N是函数y=2sin(ωx+φ)(ω>0)的图象与x轴的交点,点P在M,N之间的图象上运动,当△MPN面积最大时$\overrightarrow{PM}•\overrightarrow{PN}=0$,则实数ω等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知实数t满足关系式loga$\frac{t}{{{a^3}_{\;}}}={log_t}$$\frac{y}{a^3}$(a>0且a≠1,t>0且t≠1)
(1)令t=ax,求y=f(x)的表达式;
(2)在(1)的条件下若x∈(0,2]时,y有最小值8,求a和x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点分别为F1,F2,过F1的直线在左支相交于A、B两点.如果|AF2|+|BF2|=2|AB|,那么|AB|=4a.

查看答案和解析>>

同步练习册答案