精英家教网 > 高中数学 > 题目详情
6.已知实数t满足关系式loga$\frac{t}{{{a^3}_{\;}}}={log_t}$$\frac{y}{a^3}$(a>0且a≠1,t>0且t≠1)
(1)令t=ax,求y=f(x)的表达式;
(2)在(1)的条件下若x∈(0,2]时,y有最小值8,求a和x的值.

分析 (1)直接将t=ax的代入化简消去t即得到y=f(x)的表达式;
(2)利用复合函数的单调性,对底数a进行讨论最值情况,从而求出a和x的值.

解答 解:(1)由题意:loga$\frac{t}{{{a^3}_{\;}}}={log_t}$$\frac{y}{a^3}$(a>0且a≠1,t>0且t≠1)
可得:logat-3=logty-3logta
由t=ax,可得x=logat,$\frac{1}{x}=lo{g}_{t}a$,代入上式得x-3=logty-$\frac{3}{x}$,(注logty=$\frac{1}{x}lo{g}_{a}y$)
∴logay=x2-3x+3,即$y={a}^{{x}^{2}-3x+3}$ (x≠0)
故得:y=f(x)的表达式:$f(x)={a}^{{x}^{2}-3x+3}(x≠0)$
(2)由(1)可得$f(x)={a}^{{x}^{2}-3x+3}(x≠0)$,
令u=x2-3x+3=(x-$\frac{3}{2}$)2+$\frac{3}{4}$ (x≠0),
那么:f(x)=au
①若0<a<1,要使y=au有最小值8,
则u=(x-$\frac{3}{2}$)2+$\frac{3}{4}$ 在(0,2]上应有最大值,但u在(0,2]上不存在最大值.
②若a>1,要使y=au有最小值8,u=(x-$\frac{3}{2}$)2+$\frac{3}{4}$ 在(0,2]上应有最小值.
∴当x=$\frac{3}{2}$时,则umin=$\frac{3}{4}$,ymin=${a}^{\frac{3}{4}}$,
由题意:${a}^{\frac{3}{4}}=8$
解得:a=16.
因此:所求a和x的值分别为16,$\frac{3}{2}$.

点评 本题考查了对数与指数的互化和对数的运算,复合函数的最值问题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且b=$\sqrt{3}$,cosAsinB+(c-sinA)cos(A+C)=0.
(1)求角B的大小;
(2)若△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求sinA+sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ x-2y+1≥0\\ x-y≤0\end{array}\right.$,且目标函数之z=ax+by (a>0,b>0)的最大值为2,则$\frac{2}{a}$+$\frac{1}{b}$的最小值为$\frac{1}{2}(3+2\sqrt{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某部队为了在大阅兵中树立军队的良好形象,决定从参训的12名男兵和18名女兵中挑选出正式阅兵人员,这30名军人的身高如下:单位:cm,若身高在175cm(含175cm)以上,定义为“高个子”,身高在175cm以下,定义为“非高个子”,且只有“女高个子”才能担任“护旗手”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中选定5人,再从这5人中任选2人,那么至少有1人是“高个子”的概率是多少?
(2)若从所有“高个子”中任选3名军人,用ξ表示所选军人中能担任“护旗手”的人数,试写出ξ的分布列,并求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(2-m)+f(-m)+2m-2≥0,则实数m的取值范围为(  )
A.[-1,1]B.[1,+∞)C.[2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)的图象向右平移1个单位长度,所得图象与函数y=2x的图象关于y轴对称,则f(x)=(  )
A.2x+1B.2x-1C.2-x-1D.2-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某公司生产的某产品每件成本为40元,经市场调查整理出如下信息:
时间:(第x天)13610
日销量(m件)198194188180
①该产品90天内日销量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内销售价格(元/件)与时间(第x天)的关系如下表:
时间:(第x天)1≤x<5050≤x<90
销售价格(元/件)x+60100
(1)求m关于x的函数关系;
(2)设销售该产品每天利润为y元,求y关于x的函数表达式;并求出在90天内该产品哪天的销售利润最大?最大利润是多少?[每天利润=日销量x(销售价格-每件成本)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正方体ABCD-A1B1C1D1中,$\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{C{C}_{1}}$=(  )
A.$\overrightarrow{CA}$B.$\overrightarrow{AC}$C.$\overrightarrow{A{C}_{1}}$D.$\overrightarrow{A{B}_{1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3.\end{array}\right.$,则z=3x-y的最小值为-10.

查看答案和解析>>

同步练习册答案