精英家教网 > 高中数学 > 题目详情
11.函数f(x)的图象向右平移1个单位长度,所得图象与函数y=2x的图象关于y轴对称,则f(x)=(  )
A.2x+1B.2x-1C.2-x-1D.2-x+1

分析 由已知可得将函数y=2x的图象关于y轴对称后,再向左平移1个单位长度,可得函数f(x)的图象.

解答 解:函数y=2x的图象关于y轴对称的图象对应的解析式为:y=($\frac{1}{2}$)x=2-x
将其向左平移1个单位长度后的图象对应的解析式为:y=2-(x+1)=2-x-1
即f(x)=2-x-1
故选:C.

点评 本题考查的知识点是函数图象的对称变换,函数图象的平移变换,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.定义集合A-B={x|x∈A且x∉B},若集合A={1,3,4,5},B={2,3,4},则集合A-B的元素个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲乙两人投球命中率分别为0.5、0.4,甲乙两人各投一次,恰好命中一次的概率为(  )
A.0.5B.0.4C.0.2D.0.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,直线l的参数方程$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4sinθ
(1)直线l的参数方程化为极坐标方程;
(2)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知实数t满足关系式loga$\frac{t}{{{a^3}_{\;}}}={log_t}$$\frac{y}{a^3}$(a>0且a≠1,t>0且t≠1)
(1)令t=ax,求y=f(x)的表达式;
(2)在(1)的条件下若x∈(0,2]时,y有最小值8,求a和x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)用辗转相除法求204与85的最大公约数,并用更相减损术验证;
(2)用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=2时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.小龙与小虎约好国庆节去天柱山游玩,决定十月一日早晨7:45到8:15在高河新车站会面,并约定先到者等候另一人15分钟,若未等到,可直接乘车前往天柱山,求小龙与小虎一同前往天柱山的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{3x}{2x+3}$,数列{an}满足a1=1,an+1=f(an),n∈N*
(1)求a2,a3,a4的值;
(2)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(3)设数列{bn}满足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2014}{2}$对一切n∈N*成立,求最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的左焦点为F1(-4,0),则m=3.

查看答案和解析>>

同步练习册答案