分析 (1)利用两角和与差的三角函数以及三角形的内角和,转化求解B的正切函数值,即可得到结果.
(2)利用三角形的面积求出ac,利用余弦定理求出a+c,利用正弦定理求解即可.
解答 解:(1)由cosAsinB+(c-sinA)cos(A+C)=0,
得cosAsinB-(c-sinA)cosB=0,
即sib(A+B)=ccosB,sinC=ccosB,$\frac{sinC}{c}=cosB$,
因为$\frac{sinC}{c}=\frac{sinB}{b}$,所以$\frac{sinB}{\sqrt{3}}=cosB$,则tanB=$\sqrt{3}$,B=$\frac{π}{3}$.
(2)由$S=\frac{1}{2}acsinB=\frac{{\sqrt{3}}}{2}$,得ac=2,…(6分)
由$b=\sqrt{3}$及余弦定理得${({\sqrt{3}})^2}={a^2}+{c^2}-2accosB={a^2}+{c^2}-ac={({a+c})^2}-3ac$,…(8分)
所以a+c=3,所以$sinA+sinC=\frac{sinB}{b}({a+c})=\frac{3}{2}$…(10分)
点评 本题考查正弦定理以及余弦定理,两角和与差的三角函数,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | $\frac{8\sqrt{2}π}{3}$ | C. | 16π | D. | $\frac{32π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com