精英家教网 > 高中数学 > 题目详情
16.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3.\end{array}\right.$,则z=3x-y的最小值为-10.

分析 作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由z=3x-y得y=3x-z,
平移直线y=3x-z由图象可知当直线y=3x-z经过点B时,直线y=3x-z的截距最大,
此时z最小.
由$\left\{\begin{array}{l}{x-y+5=0}\\{x+y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\frac{5}{2}}\\{y=\frac{5}{2}}\end{array}\right.$,
即B(-$\frac{5}{2}$,$\frac{5}{2}$),
此时z=3×(-$\frac{5}{2}$)-$\frac{5}{2}$=-10,
故答案为:-10.

点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知实数t满足关系式loga$\frac{t}{{{a^3}_{\;}}}={log_t}$$\frac{y}{a^3}$(a>0且a≠1,t>0且t≠1)
(1)令t=ax,求y=f(x)的表达式;
(2)在(1)的条件下若x∈(0,2]时,y有最小值8,求a和x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点分别为F1,F2,过F1的直线在左支相交于A、B两点.如果|AF2|+|BF2|=2|AB|,那么|AB|=4a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果方程${x^2}+\frac{y^2}{k}=1$表示焦点在y轴上的椭圆,那么实数k的取值范围是(  )
A.(0,+∞)B.(0,2)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知变量x,y满足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$,则$\frac{x+y+3}{x+2}$的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的左焦点为F1(-4,0),则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1-x)6(1+2x)展开式中含有x5项的系数为24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将二进制数10101(2)化为四进制数,结果为111(4);918与714的最大公约数为102.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:x-y+b=0的距离为$2\sqrt{2}$,则b的取值范围是(  )
A.[-2,2]B.[-10,10]C.(-∞,-10]∪[10,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

同步练习册答案