精英家教网 > 高中数学 > 题目详情
5.将二进制数10101(2)化为四进制数,结果为111(4);918与714的最大公约数为102.

分析 进制转换为十进制的方法是依次累加各位数字上的数×该数位的权重;利用“除k取余法”是将十进制数除以4,然后将商继续除以4,直到商为0,然后将依次所得的余数倒序排列即可得到答案.
用辗转相除的方法求两个数字的最大公约数,把其中较大的数字写成较小数字的整数倍和余数的和的形式,以此类推,得到余数为0的结果,得到最大公约数.

解答 解:10101(2)=1×20+0×21+1×22+0×23+1×24=21,
21÷4=5…1
5÷4=1…1
1÷4=0…1
故21(10)=111(4)
∵918=714×1+204,
714=204×3+102,
204=102×2,
所以918和714的最大公约数是102.
故答案为:111(4),102.

点评 本题考查用辗转相除法求两个数字的最大公约数,考查了进位制换算的方法--除K取余法,由二进制转化为十进制的方法,我们只要依次累加各位数字上的数×该数位的权重,即可得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在正方体ABCD-A1B1C1D1中,$\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{C{C}_{1}}$=(  )
A.$\overrightarrow{CA}$B.$\overrightarrow{AC}$C.$\overrightarrow{A{C}_{1}}$D.$\overrightarrow{A{B}_{1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3.\end{array}\right.$,则z=3x-y的最小值为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(1)求sinx-cosx的值;   
 (2)求$\frac{1}{cos2x-sin2x}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,四边形ABCD是边长为4菱形,O是AC与BD的交点,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF=2$\sqrt{2}$.
(1)求证:EO⊥平面AFC;
(2)求直线AE与直线CF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图:在屋内墙角处堆放米(米堆为一个圆锥的四分之一),米堆底部的弧长为4米,高为2米,则该米堆的体积为$\frac{32}{3π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)和g(x)均为奇函数,h(x)=a?f3(x)-b?g(x)-2在区间(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值为(  )
A.-5B.-9C.-7D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在如图所示的求函数f(x)=|x-1|的函数值的程序框图中,有六名学生在空白处的判断框内填入的条件分别是:①x≥1;②x>1;③x≤1;④x<1;⑤x≥0;⑥x≤0,其中正确的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第一组[160,164],第二组[164,168],组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172cm以上(含172cm)的人数;
(Ⅲ)在这50名男生身高在172cm以上(含172cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:
若ξ-N(μ+σ2).则
p(μ-σ<ξ≤μ+σ)=0.6826,
p(μ-2σ<ξ≤μ+2σ)=0.9544,
p(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

同步练习册答案