| A. | -5 | B. | -9 | C. | -7 | D. | -1 |
分析 根据条件构造新函数h(x)+2判断函数h(x)+2的奇偶性,结合函数奇偶性和最值之间的关系建立方程进行求解即可.
解答 解:由h(x)=a?f3(x)-b?g(x)-2得h(x)+2=a?f3(x)-b?g(x),
∵函数f(x)和g(x)均为奇函数,
∴h(x)+2=a?f3(x)-b?g(x)是奇函数,
∵h(x)=a?f3(x)-b?g(x)-2在区间(0,+∞)上有最大值5,
∴hmax(x)=a?f3(x)-b?g(x)-2=5,
即hmax(x)+2=7,
∵h(x)+2是奇函数,
∴hmin(x)+2=-7,即hmin(x)=-7-2=-9,
故选:B
点评 本题主要考查函数最值的求解,根据函数奇偶性的性质构造方程,结合函数最值和奇偶性之间的对称性的性质是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | [-10,10] | C. | (-∞,-10]∪[10,+∞) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 运动时间 性别 | 运动达人 | 非运动达人 | 合计 |
| 男生 | 36 | ||
| 女生 | 26 | ||
| 合计 | 100 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com