精英家教网 > 高中数学 > 题目详情
6.若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:x-y+b=0的距离为$2\sqrt{2}$,则b的取值范围是(  )
A.[-2,2]B.[-10,10]C.(-∞,-10]∪[10,+∞)D.(-∞,-2]∪[2,+∞)

分析 先求出圆心和半径,比较半径和2$\sqrt{2}$,要求 圆上至少有三个不同的点到直线l:x-y+b=0的距离为2$\sqrt{2}$,则圆心到直线的距离应小于等于$\sqrt{2}$,用圆心到直线的距离公式,可求得结果.

解答 解:圆x2+y2-4x-4y-10=0整理为(x-2)2+(y-2)2=18,
∴圆心坐标为(2,2),半径为3$\sqrt{2}$,
要求圆上至少有三个不同的点到直线l:x-y+b=0的距离为2$\sqrt{2}$,
则圆心到直线的距离d=$\frac{|b|}{\sqrt{2}}$≤$\sqrt{2}$,
∴-2≤b≤2,
∴b的取值范围是[-2,2],
故选A.

点评 本题考查直线和圆的位置关系,圆心到直线的距离等知识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3.\end{array}\right.$,则z=3x-y的最小值为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)和g(x)均为奇函数,h(x)=a?f3(x)-b?g(x)-2在区间(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值为(  )
A.-5B.-9C.-7D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在如图所示的求函数f(x)=|x-1|的函数值的程序框图中,有六名学生在空白处的判断框内填入的条件分别是:①x≥1;②x>1;③x≤1;④x<1;⑤x≥0;⑥x≤0,其中正确的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$的图象向右平移$\frac{π}{6}$个单位后关于原点对称,则函数f(x)=sin(2x+φ)在[0,$\frac{π}{4}$]上的最小值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知四面体ABCD中,AB=AC,BD=CD,平面ABC⊥平面BCD,E,F分别为棱BC和AD的中点.
(Ⅰ)求证:AE⊥平面BCD;
(Ⅱ)求证:AD⊥BC;
(Ⅲ)点G在棱AB上,且满足FG∥平面BCD,求点G在棱AB上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$sin(\frac{π}{3}-α)=-\frac{2}{5}$,则$cos(\frac{2015π}{3}-2a)$=(  )
A.$\frac{7}{8}$B.$-\frac{7}{8}$C.$\frac{17}{25}$D.$-\frac{17}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第一组[160,164],第二组[164,168],组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172cm以上(含172cm)的人数;
(Ⅲ)在这50名男生身高在172cm以上(含172cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:
若ξ-N(μ+σ2).则
p(μ-σ<ξ≤μ+σ)=0.6826,
p(μ-2σ<ξ≤μ+2σ)=0.9544,
p(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:函数y=log0.5(x2+x+a)的定义域为R,命题q:关于x的不等式x2-2ax+1≤0在R上有解.若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案