精英家教网 > 高中数学 > 题目详情
11.已知变量x,y满足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$,则$\frac{x+y+3}{x+2}$的最大值为$\frac{5}{2}$.

分析 作出不等式组对应的平面区域,化简目标函数,利用它的几何意义,即可求最大值.

解答 解:作出不等式组$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$对应的平面区域:$\frac{x+y+3}{x+2}$=1+$\frac{y+1}{x+2}$的几何意义为区域内的点到P(-2,-1)的斜率加上1.,
由图象知,PB的斜率最大
由$\left\{\begin{array}{l}{x-2y+4=0}\\{x+y-2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,即B(0,2),
故PB的斜率k=$\frac{2+1}{0+2}$=$\frac{3}{2}$.
则$\frac{x+y+3}{x+2}$的最大值为:$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 本题主要考查线性规划和直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(2-m)+f(-m)+2m-2≥0,则实数m的取值范围为(  )
A.[-1,1]B.[1,+∞)C.[2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$tanθ=-\frac{4}{3}$(0<θ<π),则cosθ=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将y=sin($ωx+\frac{π}{4}$)图象向右平移$\frac{π}{4}$单位长度后,与原图图象重合,则正数ω最小值为(  )
A.4B.8C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=x+\frac{a}{x}+2$的值域为(-∞,0]∪[4,+∞),则a的值是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3.\end{array}\right.$,则z=3x-y的最小值为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用秦九韶算法求f(x)=2x3-x2+4x+3,需要加法与乘法运算的次数分别为(  )
A.2,3B.3,3C.3,2D.2,2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,四边形ABCD是边长为4菱形,O是AC与BD的交点,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF=2$\sqrt{2}$.
(1)求证:EO⊥平面AFC;
(2)求直线AE与直线CF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$的图象向右平移$\frac{π}{6}$个单位后关于原点对称,则函数f(x)=sin(2x+φ)在[0,$\frac{π}{4}$]上的最小值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案