精英家教网 > 高中数学 > 题目详情
8.设x1,x2∈R,函数f(x)满足ex=$\frac{1+f(x)}{1-f(x)}$,若f(x1)+f(x2)=1,则f(x1+x2)最小值是(  )
A.4B.2C.$\frac{4}{5}$D.$\frac{1}{4}$

分析 由条件求得f(x)的解析式,再由f(x1)+f(x2)=1,可得${e}^{{x}_{1}+{x}_{2}}$=${e}^{{x}_{1}}$+${e}^{{x}_{2}}$+1,运用基本不等式可得${e}^{{x}_{1}+{x}_{2}}$≥9,再由函数的单调性,即可得到最小值.

解答 解:由ex=$\frac{1+f(x)}{1-f(x)}$,可得
f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$=1-$\frac{2}{{e}^{x}+1}$,
由f(x1)+f(x2)=1,可得
$\frac{1}{1+{e}^{{x}_{1}}}$+$\frac{1}{1+{e}^{{x}_{2}}}$=$\frac{1}{2}$,
即为${e}^{{x}_{1}+{x}_{2}}$=${e}^{{x}_{1}}$+${e}^{{x}_{2}}$+3,
由${e}^{{x}_{1}}$+${e}^{{x}_{2}}$≥2$\sqrt{{e}^{{x}_{1}+{x}_{2}}}$,
即有${e}^{{x}_{1}+{x}_{2}}$≥2$\sqrt{{e}^{{x}_{1}+{x}_{2}}}$+3,
解得$\sqrt{{e}^{{x}_{1}+{x}_{2}}}$≥3,
即${e}^{{x}_{1}+{x}_{2}}$≥9,当且仅当x1=x2,取得等号,
则f(x1+x2)=1-$\frac{2}{{e}^{{x}_{1}+{x}_{2}}+1}$≥1-$\frac{2}{9+1}$=$\frac{4}{5}$.
即有最小值为$\frac{4}{5}$.
故选C.

点评 本题考查函数的性质和运用,主要考查指数函数的单调性及运用,同时考查基本不等式的运用:求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,x),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数x的值是(  )
A.-2B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={1,2},N={2,3},P={x|x=a+b,a∈M,b∈N},P中元素个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a、b、c是三个互不相等的正整数,且abc=210,若a+b+c的最大值为M,最小值为m,则M-m=90.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:“存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$≥1”,则下列说法正确的是(  )
A.p是假命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命题;¬p“不存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$<1”
C.p是真命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命题;¬p“任意x∈(-∞,1),都有(log23)x<1”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:函数f(x)=ln(1+x)-x+ax2(a∈R).
(Ⅰ)求f(x)在点(0,f(0)处的切线方程;
(Ⅱ)当a∈(-∞,$\frac{1}{2}$)时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.要得到$y=\sqrt{3}sin2x-cos2x$的图象,只需将y=2sin2x的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向右平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,点A(0,b),过F,A的直线与双曲线的一条渐近线在y轴右侧的交点为B,若$\overrightarrow{AF}=(\sqrt{2}+1)\overrightarrow{AB}$,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设各项均为正数的等比数列{an}中,a1+a3=10,a3+a5=40.设bn=log2an
(1)求数列{bn}的通项公式;     
(2)若c1=1,cn+1=cn+$\frac{b_n}{a_n}$,求证:cn<3.
(3)是否存在正整数k,使得$\frac{1}{{b}_{n}+1}$+$\frac{1}{{b}_{n}+2}$+…+$\frac{1}{{b}_{n+n}}$>$\frac{k}{10}$对任意正整数n均成立?若存在,求出k的最大值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案