精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,x),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数x的值是(  )
A.-2B.2C.1D.$\frac{1}{2}$

分析 利用向量坐标运算、向量共线定理即可得出.

解答 解:$\overrightarrow{a}$+$\overrightarrow{b}$=(3,1+x),$\overrightarrow{a}$-$\overrightarrow{b}$=(1,1-x),
∵$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,
∴1+x-3(1-x)=0,
解得x=$\frac{1}{2}$.
故选:D.

点评 本题考查了向量坐标运算、向量共线定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.将射线y=$\frac{1}{7}$x(x≥0)绕着原点逆时针旋转$\frac{π}{4}$后所得的射线经过点A=(cosθ,sinθ).
(Ⅰ)求点A的坐标;
(Ⅱ)若向量$\overrightarrow{m}$=(sin2x,2cosθ),$\overrightarrow{n}$=(3sinθ,2cos2x),求函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.甲、乙两位同学玩猜数字游戏:
(1)给出四个数字0,1,2,5,先由甲将这四个数字组成一个四位数,然后由乙来猜甲的四位数是多少,求乙猜对的概率;
(2)甲先从1,2,3,4,5,6这六个数中任选出两个数(不考虑先后顺序),然后由乙来猜.若乙至少答对一个数则乙赢,否则甲赢.问这种游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数x,y满足条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-5≥0}\\{y-3≤0}\end{array}\right.$,若不等式m(x2+y2)≤(x+y)2恒成立,则实数m的最大值是$\frac{25}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数).在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$.求C1与C2交点的极坐标,其中ρ≥0,0≤θ<2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x≤4}\\{|x-6|,x>4}\end{array}\right.$,若方程f(x)=kx+1有三个不同的实数根,则实数k的取值范围是(  )
A.(-$\frac{1}{6}$,$\frac{1}{4}$)B.(-∞,-$\frac{1}{6}$)∪($\frac{1}{4}$,+∞)C.[-$\frac{1}{6}$,$\frac{1}{4}$)D.(-$\frac{1}{6}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知各项均为正数的等比数列{an}满足a1=1,a3-a2=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{n}{2{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+a|+|x+$\frac{1}{a}$|(a>0)
(I)当a=2时,求不等式 f(x)>3的解集;(Ⅱ)证明:f(m)+$f(-\frac{1}{m})≥4$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x1,x2∈R,函数f(x)满足ex=$\frac{1+f(x)}{1-f(x)}$,若f(x1)+f(x2)=1,则f(x1+x2)最小值是(  )
A.4B.2C.$\frac{4}{5}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案