精英家教网 > 高中数学 > 题目详情
13.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数).在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$.求C1与C2交点的极坐标,其中ρ≥0,0≤θ<2π.

分析 运用同角的平方关系,可得C1的普通方程,由x=ρcosθ,y=ρsinθ,可得曲线C2的直角坐标方程,联立方程组,可得交点,再由直角坐标和极坐标的关系,即可得到所求点的极坐标.

解答 解:将$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$消去参数α,得(x-2)2+y2=4,
所以C1的普通方程为:x2+y2-4x=0. 
由ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$,即为$\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ)=2$\sqrt{2}$,
则曲线C2的极坐标方程化为直角坐标方程得:x-y-4=0.   
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-4x=0}\\{x-y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$,
所以C1与C2交点的极坐标分别为(4,0)或(2$\sqrt{2}$,$\frac{7π}{4}$).

点评 本题考查参数方程,极坐标方程和普通方程的互化,同时考查曲线交点的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.关于函数f(x)=($\frac{3}{2}$)x-sinx-1,给出下列四个命题:
①该函数没有大于0的零点;
②该函数有无数个零点;
③该函数在(0,+∞)内有且只有一个零点;
④若x0是函数的零点,则x0<2.
其中所有正确命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{an}满足a1=$\frac{1}{2},{a_{n+1}}=a_n^2+{a_n}$,n∈N+,且bn=$\frac{1}{{1+{a_n}}}$,Pn=b1•b2…bn,Sn=b1+b2+…+bn,则2Pn+Sn=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线C的离心率为2,它的一个焦点是抛物线x2=8y的焦点,则双曲线C的标准方程为y2-$\frac{{x}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,矩形ABCD所在平面与三角形ECD所在平面相交于CD,AE⊥平面ECD.
(1)求证:AB⊥平面ADE;
(2)若点M在线段AE上,AM=2ME,N为线段CD中点,求证:EN∥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,x),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数x的值是(  )
A.-2B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b∈R,i为虚数单位,若a-i=2+bi,则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,集合A={1,2,zi},B={1,3},A∪B={1,2,3,4},则复数z=(  )
A.-4iB.4iC.-2iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:“存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$≥1”,则下列说法正确的是(  )
A.p是假命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命题;¬p“不存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$<1”
C.p是真命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命题;¬p“任意x∈(-∞,1),都有(log23)x<1”

查看答案和解析>>

同步练习册答案