分析 运用同角的平方关系,可得C1的普通方程,由x=ρcosθ,y=ρsinθ,可得曲线C2的直角坐标方程,联立方程组,可得交点,再由直角坐标和极坐标的关系,即可得到所求点的极坐标.
解答 解:将$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$消去参数α,得(x-2)2+y2=4,
所以C1的普通方程为:x2+y2-4x=0.
由ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$,即为$\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ)=2$\sqrt{2}$,
则曲线C2的极坐标方程化为直角坐标方程得:x-y-4=0.
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-4x=0}\\{x-y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$,
所以C1与C2交点的极坐标分别为(4,0)或(2$\sqrt{2}$,$\frac{7π}{4}$).
点评 本题考查参数方程,极坐标方程和普通方程的互化,同时考查曲线交点的求法,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4i | B. | 4i | C. | -2i | D. | 2i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p是假命题;¬p“任意x∈[1,+∞),都有(log23)x<1” | |
| B. | p是真命题;¬p“不存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$<1” | |
| C. | p是真命题;¬p“任意x∈[1,+∞),都有(log23)x<1” | |
| D. | p是假命题;¬p“任意x∈(-∞,1),都有(log23)x<1” |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com