精英家教网 > 高中数学 > 题目详情
2.已知i为虚数单位,集合A={1,2,zi},B={1,3},A∪B={1,2,3,4},则复数z=(  )
A.-4iB.4iC.-2iD.2i

分析 根据集合的基本运算,结合复数的基本运算进行求解即可.

解答 解:∵集合A={1,2,zi},B={1,3},A∪B={1,2,3,4},
∴zi=4,即z=-4i,
故选:A.

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列结论中正确的个数是(  )
①命题“?x∈R,cosx>0”的否定是“?x0∈R,cosx0<0”;
②射击比赛中,比赛成绩的方差越小的运动员成绩越不稳定;
③在△ABC中,“A<B”是“cos2A>cos2B”的充要条件;
④若¬p∨q是假命题,则p∧q是假命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数).在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$.求C1与C2交点的极坐标,其中ρ≥0,0≤θ<2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知各项均为正数的等比数列{an}满足a1=1,a3-a2=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{n}{2{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2是双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点,点F1关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+a|+|x+$\frac{1}{a}$|(a>0)
(I)当a=2时,求不等式 f(x)>3的解集;(Ⅱ)证明:f(m)+$f(-\frac{1}{m})≥4$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.等比数列{an}中,前n项和Sn=3n+r,则r=-1,公比q=3,通项公式an=2•3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=|x-2|-3.
(Ⅰ)若f(x)<0,求x的取值范围;
(Ⅱ)在(Ⅰ)的条件下,求g(x)=3$\sqrt{x+4}+4\sqrt{|x-6|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项和为Sn,且满足$2\sqrt{S_n}={a_n}+1$,n∈N*
(Ⅰ)求a1、a2的值,并求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}({a_n}+3)}}$,数列{bn}的前n项和为Tn,证明:${T_n}<\frac{1}{2}$.

查看答案和解析>>

同步练习册答案