精英家教网 > 高中数学 > 题目详情
10.已知各项均为正数的等比数列{an}满足a1=1,a3-a2=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{n}{2{a}_{n}}$,求数列{bn}的前n项和Sn

分析 (Ⅰ)通过a1=1、a3-a2=2及数列{an}的各项均为正数,可得q=2,计算即可;
(Ⅱ)通过bn=$\frac{n}{2{a}_{n}}$=$\frac{n}{{2}^{n}}$,可写出Sn、$\frac{1}{2}$Sn的表达式,利用错位相减法及等比数列的求和公式计算即可.

解答 解:(Ⅰ)设数列{an}的公比为q,
由a1=1,a3-a2=2得:
q2-q-2=0,
解得:q=2或q=-1,
∵数列{an}的各项均为正数,
∴q=2,∴an=1×2n-1=2n-1
(Ⅱ)∵bn=$\frac{n}{2{a}_{n}}$=$\frac{n}{{2}^{n}}$,
∴Sn=$1×\frac{1}{2}$+2×$\frac{1}{{2}^{2}}$+3×$\frac{1}{{2}^{3}}$+…+(n-1)×$\frac{1}{{2}^{n-1}}$+n×$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Sn=1×$\frac{1}{{2}^{2}}$+2×$\frac{1}{{2}^{3}}$+…+(n-1)×$\frac{1}{{2}^{n}}$+n×$\frac{1}{{2}^{n+1}}$,
两式相减得:$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-n×$\frac{1}{{2}^{n+1}}$
=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$
=1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$,
∴Sn=2-$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$.

点评 本题主要考查等比数列的通项公式、错位相减法求前n项和等知识,考查学生的运算求解能力,考查函数与方程及化归与转化思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知f(x)=ex-x,命题p:?x∈R,f(x)>(0),则(  )
A.p是真命题,¬p:?x0∈R,f(x0)<0B.p是真命题,¬p:?x0∈R,f(x0)≤0
C.p是假命题,¬p:?x0∈R,f(x0)<0D.p是假命题,¬p:?x0∈R,f(x0)≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线C的离心率为2,它的一个焦点是抛物线x2=8y的焦点,则双曲线C的标准方程为y2-$\frac{{x}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,x),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数x的值是(  )
A.-2B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b∈R,i为虚数单位,若a-i=2+bi,则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=sin(2x-$\frac{π}{6}$)的图象与函数y=cos(x-$\frac{π}{3}$)的图象(  )
A.有相同的对称轴但无相同的对称中心
B.有相同的对称中心但无相同的对称轴
C.既有相同的对称轴也有相同的对称中心
D.既无相同的对称中心也无相同的对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,集合A={1,2,zi},B={1,3},A∪B={1,2,3,4},则复数z=(  )
A.-4iB.4iC.-2iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={1,2},N={2,3},P={x|x=a+b,a∈M,b∈N},P中元素个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.要得到$y=\sqrt{3}sin2x-cos2x$的图象,只需将y=2sin2x的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向右平移$\frac{π}{12}$个单位长度

查看答案和解析>>

同步练习册答案