精英家教网 > 高中数学 > 题目详情
8.如图,矩形ABCD所在平面与三角形ECD所在平面相交于CD,AE⊥平面ECD.
(1)求证:AB⊥平面ADE;
(2)若点M在线段AE上,AM=2ME,N为线段CD中点,求证:EN∥平面BDM.

分析 (1)证明AB⊥AE,AB⊥AD,利用直线与平面垂直的判定定理证明AB⊥平面ADE.
(2)连AN交BD于F点,连接FM,证明EN∥FM,利用直线与平面平行的判定定理证明EN∥平面BDM.

解答 证明:(1)∵AE⊥平面ECD,CD?平面ECD.
∴AE⊥CD. 又∵AB∥CD,∴AB⊥AE.…(2分)
在矩形ABCD中,AB⊥AD,…(4分)
∵AD∩AE=A,AD,AE?平面ADE,
∴AB⊥平面ADE.…(6分)
(2)连AN交BD于F点,连接FM,…(8分)
∵AB∥CD且AB=2DN,
∴AF=2FN,…(10分)
又AM=2ME∴EN∥FM,…(12分)
又EN?平面BDM,FM?平面BDM.
∴EN∥平面BDM.…(14分)

点评 本题考查直线与平面平行的判定定理以及直线与平面垂直的判定定理的应用,考查逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.若x,y为正实数,4x2+y2+xy=1,求x+y最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校从参加考试的学生中抽出50名,将其成绩(均为整数)分成六组[40,50),[50,60),…,[90,100],其样本频率分布表如下:
分组频数频率
[40,50)60.12
[50,60)80.16
[60,70)120.24
[70,80)
[80,90)40.08
[90,100]20.04
合计
(Ⅰ)试把给出的样本频率分布表中的空格都填上;
(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ)从成绩是80分以上(含80分)的学生中选两名,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A={-1,3},B={2,4},则A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在三棱柱ABC-A1B1C1中,侧棱AA1⊥平面AB1C1,AA1=1,底面△ABC是边长为2的正三角形,则此三棱柱的体积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数).在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$.求C1与C2交点的极坐标,其中ρ≥0,0≤θ<2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a>0,b>0,且a+3b=ab,则ab的最小值为(  )
A.6B.12C.16D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2是双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点,点F1关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱锥P-ABC中,PA⊥底面ABC,D是AB的中点,AB=2DC,E是PA的中点,F是△ACD的重心.
(I)求证:BC⊥平面PAC;
(II)求证:EF∥平面PBC.

查看答案和解析>>

同步练习册答案